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In the beginning ...

Diffie and Hellman 1976: A “one-way” function-can beused to pass
secret information over an insecure channel.

x + g*(mod p) is easy; finding discrete logarithms is hard.

Rivest, Shamir, and Adleman 1977: A “trap-door” function can
be used to implement public-key cryptography:.

x> zf(mod N) is easy; the inverse mapping is hard
unless you know p(N).




Textbook RSA

> Choose two large primes p and ¢. Set N = pq.
> M, the message space and C, the ciphertext space, are both Zy.
> Choose an encryption exponent e that is relatively prime to

p(N) = (p—1)(g—1).
> Use the Buclidean algorithm to find d = e~ (mod ¢(N)).

Encryption:
For m € M, define ¢ = Enc(m) = m® mod N

Decryption:
For ¢ € C, define Dec(c) = ¢ mod N.

Then it is easy to check that

Dec(Enc(m)) = (m)? = m* = m** ™M+ =m  (mod N).




Textbook RSA: Public-key encryption m

> Bob selects p, ¢, and e. He computes NV and d.
> Bob makes N and e public. This is the encryption key. %

> Alice has a message m. She computes
¢ =m°mod N and sends ¢ to Bob.
> Bob knows the value of d, so he can compute

¢ mod N, and thus recover the value of m.

> Eve, who traditionally listens in on all conversations
between Bob and Alice, knows the values of

N and e,

and she sees the ciphertext ¢, (which is equal to m°).
Can she find m?




Textbook RSA: Textbook security

Eve can recover m from ¢ = m*

if ... she can compute d = e~ ', which she can do

if ... she knows the value of ¢(N), which she can find
if ... she can factor V.
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So security is related to the difficulty of factoring NV ...




Textbook RSA: Textbook security

Eve can recover m from ¢ = m° ...

if (<=) she can compute d = e, which she can do
if (<=) she knows the value of ¢(N), which she can find
if (<=) she can factor N.

So security is related to the difficulty of factoring NV ...
... but the arrows go the wrong way.

If factoring NV is easy, then Eve can easily break RSA.

If factoring N is not easy, then 77

b

This is what we believe.




Textbook RSA: Textbook security

Eve can recover m from ¢ = m° ...

if (<=) she can compute d = e, which she can do
if (<=) she knows the value of ¢(N), which she can find
< she can factor N.

> Reversing arrow #3: If Eve knows N and ¢(V), can she factor N7
Yes: N=pgand N +1—@(N)=p+q.




Textbook RSA: Textbook security

Eve can recover m from ¢ = m° ...

if (<=) she can compute d = e, which she can do
< she knows the value of ¢(IV), which she can find
< she can factor N.

> Reversing arrow #3: If Eve knows N and ¢(V), can she factor N7
Yes: N=pgand N +1—@(N)=p+q.

> Reversing arrow #2: If Eve knows N and e and can find a number
d such that 2 = & (mod N) for all z, can she find @(N)?

Yes, though this is less obvious.
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Textbook RSA: Textbook security

Eve can recover m from ¢ = m° ...

if (<=) she can compute d = e, which she can do
< she knows the value of ¢(IV), which she can find
& she can factor N.

> Reversing arrow #3: If Eve knows N and ¢(V), can she factor N7
Yes: N=pgand N +1—@(N)=p+q.
> Reversing arrow #2: If Eve knows N and e and can find a number
d such that 2 = & (mod N) for all z, can she find @(N)?
Yes, though this is less obvious.
> Reversing arrow #1: If Eve knows how to find ™ roots in 2y, can
she find the inverse of e modulo p(N)?

Unknown.
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Textbook RSA: Textbook security

Result: For RSA security, we have to believe that

1. Factoring is hard and

2. Eve has no efficient way to extract e roots in Z%.
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Textbook RSA: Textbook security

Result: For RSA security, we have to believe that

1. Factoring is hard and

2. Eve has no efficient way to extract e™ roots in Ly -

LThjs is the RSA Assumption.
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Cryptographic Security Definitions

These depend on the attacker’s

Goals: Does she want to ... Capabilities: Can she ...
- read m? - see just the ciphertext?
- alter m? - intercept and alter the ciphertext?
- forge a new m'? - use the encryption machinery?
- gain partial information - use the decryption machinery

about m? (just temporarily)?
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Cryptographic Security Definitions
These depend on the attacker’s

Goals: Does she want to ... Capabilities: Can she ...
- read m? - see just the ciphertext?
- alter m? - intercept and alter the ciphertext?
- forge a new m'? - use the encryption machinery?
- gain partial information - use the decryption machinery
about m? (just temporarily)?

Most security definitions are presented as games.

- We give the attacker a goal and a set of powers.

- If the attacker can reach the goal in a reasonable amount of time,
she wins, and the system is insecure.

- If no attacker can win the game, the system is secure.
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Cryptographic Security Definitions
An appropriate security definition for RSA is

Semantic Security under a Chosen-Plaintext Attack

In a chosen-plaintext attack (CPA), the attacker gets free use of the

encryption machinery in the first part of the game.

The attacker wins a semantic security (SS) game if she can learn

anything about an encrypted message, apart from its length.

16



Cryptographic Security Definitions
An appropriate security definition for RSA is

Semantic Security under a Chosen-Plaintext Attack

The SS-CPA Game

0. The defender sets up the encryption machinery. (In this case,
he chooses N and e).

1. The attacker submits a message m and receives its encryption
c. She may repeat this as many times as she likes.

2. The attacker submits two messages, m and mq, of equal
length. The defender flips a 0/1 coin to obtain a random
bit b. He returns the encryption of my to the attacker.

3. The attacker tries to guess whether she has been given the
encryption of mg or my. If she can guess correctly with
probability significantly greater than %, she wins.

17



Cryptographic Security Definitions

Is textbook RSA semantically secure?

18



Cryptographic Security Definitions
Is textbook RSA semantically secure? No!

The attacker can win every time:
1. The attacker submits a single message mg and receives its
encryption cy.
2. The attacker submits m( and some m; # my of the same
length. The defender returns an encryption c.
3. If ¢ = ¢y, the attacker says b = 0; otherwise, she says b = 1.
She is correct with probability 1.
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Cryptographic Security Definitions
Is textbook RSA semantically secure? No!

The attacker can win every time:
1. The attacker submits a single message mg and receives its
encryption cy.
2. The attacker submits m( and some m; # my of the same
length. The defender returns an encryption c.
3. If ¢ = ¢y, the attacker says b = 0; otherwise, she says b = 1.
She is correct with probability 1.

Reasonable Question: How can any system be CPA
semantically secure?

Answer: As long as Enc(-) is a function, it can’t.
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Cryptographic Security Definitions
Is textbook RSA semantically secure? No!

The attacker can win every time:
1. The attacker submits a single message mg and receives its
encryption cy.
2. The attacker submits m( and some m; # my of the same
length. The defender returns an encryption c.
3. If ¢ = ¢y, the attacker says b = 0; otherwise, she says b = 1.
She is correct with probability 1.

Reasonable Question: How can any system be CPA

semantically secure?
deterministic
Answer: As long as Enc(-) is a/\function, it can’t.

We need Enc( ) to be a randomized function.

21



Randomized Encryption — What?

M C M
I Enc(-) Y T~ Dec(+) I

In deterministic encryption,
Enc( ) is a one-to-one function, and Dec( - ) is its inverse.

22



Randomized Encryption — What?

C
M I M
[ ] [ ] (] ‘\\\. t/l’l D . [ ]
* Enc( . ) \< .
: | [ ] [ ] [ ] [ ] \:

In randomized encryption,

Enc(m) chooses a random point in Dec™!(m).
Consequences of this:

Enc(-) isn’t really a function.

Dec( - ) is a many-to-one function.

The ciphertext space C is bigger than the message space M.




Randomized Encryption — Why? (1)
Semantic Security in World War 11

May 20, 1942: Cryptanalysts at Pearl Harbor partially decrypt a
radio transmission from Admiral Yamamoto. It appears to be an
order to attack location AF.

Prior intercepts suggest that AF is Midway Island, but Admiral
Nimitz is unwilling to send defense forces to Midway without more
evidence.

The Pearl Harbor cryptanalysts instruct the Allied garrison
at Midway to broadcast, in the clear, a message saying that the
Midway fresh-water distillation plant has broken down.

Two days later, in the intercepts of Japanese radio traffic, Allied
Intelligence finds the message “Location AF is short of water.”

Admiral Nimitz is satisfied, and orders defense forces to Midway.

24



Randomized Encryption — Why? (2)

Deterministic Encryption Leaks Information

Original message Deterministic encryption

25



Randomized Encryption — Why? (2)

Deterministic Encryption Leaks Information

Original message

Randomized

encryption
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Randomized Encryption — Why? (2)

Deterministic Encryption Leaks Information

Where are we?
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Randomized Encryption — Why? (3)
Deterministic Encryption Doesn’t Work with Small Message Spaces

Bob sends Alice his Social-Security number m m
using deterministic RSA: :

c=m"mod N %

Eve intercepts c. She knows e and N, so she can just compute £° mod

N for all 10° values & = |dy|dy ds — dy|ds|— dg|dr|ds|dg |

When z¢ matches ¢, Eve has found Bob’s secret.

Even better (or worse), if Bob acquired his SSN before
2011 and Eve knows where he lived at the time, her search
space is reduced to only 10° or 10" numbers.

28



Randomized encryption — How?

A document called ISO /TEC 18033-2 contains a standard protocol
for using RSA encryption in a semantically-secure way. The protocol
requires:

A symmetric-key encryption scheme
For each k in a keyspace IC, we have

Enc; : M — C; Decj, = Enc,;1

Each function Encj should be indistinguishable from a random
(invertible) function M — C.

A hash function H : Zy — K
Anyone can query H as an oracle, but no one knows its inner

workings. For any set S C Zy, knowing the values of H(z) for all
x € S should give no information about the value of H(y) for any

yEs.
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RSA KEM/DEM (ISO/IEC)

Encryption: Bob generates a ran-
dom “pre-key” x € Zy. He feeds
x to a (public) hash function to pro-
duce a symmetric key k&, which he
uses to encrypt the message m.

He sends Alice the (symmetric-key)
encryption ¢ of m, and the RSA
(public-key) encryption y of x.

Decryption: Alice decrypts y to get
the “pre-key” x. She then uses the
public hash function to recover the
symmetric key k, and decrypts ¢ to
recover m.

(T« Zn ) oy = a°

@ Ean( . ) — [¢ = Enci(m)] — R Deck( - ) @
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RSA KEM/DEM (ISO/IEC)

Bavesdropping: The message is protected by k. If H is a
good hash function, then Eve cannot find k& without first
knowing x. By the RSA assumption, Eve cannot recover x
from y.

This system is randomized, so it can be semantically secure.

Furthermore, since the message is protected by k and H,
a partial break of the RSA branch will not give Eve any
information about m.

(z + Zn ) oy = af ] | =y

@ Ean( . ) — [¢ = Enci(m)] — R Deck( - )
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RSA ISO/IEC KEM/DEM in SSL/TLS

Public-key encryption is much slower than private-key encryption, so it’s
typically used only at the beginning of a session to enchange the keys
that will be used for encrypting the real stuff.

Client
Hello? Server?

If the CA says OK, then ...]|

Here’s a random pmk. I'll send it
to you using the RSA KEM/DEM
scheme from the previous slide.

[Calculates AES keys from pmk]

Server

Hi!  Here’s my public encryption
key: pk, and here’s a note from my
CA.

Got it. Now we both know pmk.
[Calculates AES keys from pmk]
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RSA ISO/IEC KEM/DEM in SSL/TLS

Public-key encryption is much slower than private-key encryption, so it’s
typically used only at the beginning of a session to enchange the keys
that will be used for encrypting the real stuff.

Client
Hello? Server?

If the CA says OK, then ...]|

Here’s a random pmk. I'll send it
to you using the RSA KEM/DEM
scheme from the previous slide.

[Calculates AES keys from pmk|

AES
high-speed

machinery

Server

Hi!  Here’s my public encryption
key: pk, and here’s a note from my
CA.

Got it. Now we both know pmk.
[Calculates AES keys from pmk]

AES
high-speed

machinery
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