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In the beginning . . .
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In the beginning . . .

Diffie and Hellman 1976: A “one-way” function can be used to pass

secret information over an insecure channel.

x 7→ gx(mod p) is easy; finding discrete logarithms is hard.

Rivest, Shamir, and Adleman 1977: A “trap-door” function can

be used to implement public-key cryptography.

x 7→ xe(mod N) is easy; the inverse mapping is hard

unless you know φ(N).
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Textbook RSA

◃ Choose two large primes p and q. Set N = pq.

◃M, the message space and C, the ciphertext space, are both Z∗N .
◃ Choose an encryption exponent e that is relatively prime to

φ(N) = (p− 1)(q − 1).

◃ Use the Euclidean algorithm to find d ≡ e−1 (mod φ(N)).

Encryption:
For m ∈M, define c = Enc(m) = me mod N

Decryption:
For c ∈ C, define Dec(c) = cd mod N .

Then it is easy to check that

Dec(Enc(m)) ≡ (me)d ≡ med ≡ mkφ(N)+1 ≡ m (mod N).
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Textbook RSA: Public-key encryption

◃ Bob selects p, q, and e. He computes N and d.

◃ Bob makes N and e public. This is the encryption key.

◃ Alice has a message m. She computes

c = me mod N and sends c to Bob.

◃ Bob knows the value of d, so he can compute

cd mod N , and thus recover the value of m.

◃ Eve, who traditionally listens in on all conversations

between Bob and Alice, knows the values of

N and e,

and she sees the ciphertext c, (which is equal to me).

Can she find m?
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Textbook RSA: Textbook security

Eve can recover m from c = me . . .

if . . . she can compute d = e−1, which she can do

if . . . she knows the value of φ(N), which she can find

if . . . she can factor N .
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Textbook RSA: Textbook security

Eve can recover m from c = me . . .

if . . . she can compute d = e−1, which she can do

if . . . she knows the value of φ(N), which she can find

if . . . she can factor N .

So security is related to the difficulty of factoring N . . .
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Textbook RSA: Textbook security

Eve can recover m from c = me . . .

if (⇐) she can compute d = e−1, which she can do

if (⇐) she knows the value of φ(N), which she can find

if (⇐) she can factor N .

So security is related to the difficulty of factoring N . . .

. . . but the arrows go the wrong way.

If factoring N is easy, then Eve can easily break RSA.

If factoring N is not easy, then ??

This is what we believe.
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Textbook RSA: Textbook security

Eve can recover m from c = me . . .

if (⇐) she can compute d = e−1, which she can do

if (⇐) she knows the value of φ(N), which she can find

⇔ she can factor N .

◃ Reversing arrow #3: If Eve knows N and φ(N), can she factor N?

Yes: N = pq and N + 1− φ(N) = p + q.
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Textbook RSA: Textbook security

Eve can recover m from c = me . . .

if (⇐) she can compute d = e−1, which she can do

⇔ she knows the value of φ(N), which she can find

⇔ she can factor N .

◃ Reversing arrow #3: If Eve knows N and φ(N), can she factor N?

Yes: N = pq and N + 1− φ(N) = p + q.

◃ Reversing arrow #2: If Eve knows N and e and can find a number

d such that xed ≡ x (mod N) for all x, can she find φ(N)?

Yes, though this is less obvious.
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Textbook RSA: Textbook security

Eve can recover m from c = me . . .

if (⇐) she can compute d = e−1, which she can do

⇔ she knows the value of φ(N), which she can find

⇔ she can factor N .

◃ Reversing arrow #3: If Eve knows N and φ(N), can she factor N?

Yes: N = pq and N + 1− φ(N) = p + q.

◃ Reversing arrow #2: If Eve knows N and e and can find a number

d such that xed ≡ x (mod N) for all x, can she find φ(N)?

Yes, though this is less obvious.

◃ Reversing arrow #1: If Eve knows how to find eth roots in Z∗N , can
she find the inverse of e modulo φ(N)?

Unknown.
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Textbook RSA: Textbook security

Result: For RSA security, we have to believe that

1. Factoring is hard and

2. Eve has no efficient way to extract eth roots in Z∗N .
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Textbook RSA: Textbook security

Result: For RSA security, we have to believe that

1. Factoring is hard and

2. Eve has no efficient way to extract eth roots in Z∗N .
This is the RSA Assumption.
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Cryptographic Security Definitions

These depend on the attacker’s

Goals: Does she want to . . .

· read m?

· alter m?

· forge a new m′?

· gain partial information

about m?

Capabilities: Can she . . .

· see just the ciphertext?
· intercept and alter the ciphertext?

· use the encryption machinery?

· use the decryption machinery

(just temporarily)?
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Cryptographic Security Definitions

These depend on the attacker’s

Goals: Does she want to . . .

· read m?

· alter m?

· forge a new m′?

· gain partial information

about m?

Capabilities: Can she . . .

· see just the ciphertext?
· intercept and alter the ciphertext?

· use the encryption machinery?

· use the decryption machinery

(just temporarily)?

Most security definitions are presented as games.

- We give the attacker a goal and a set of powers.

- If the attacker can reach the goal in a reasonable amount of time,

she wins, and the system is insecure.

- If no attacker can win the game, the system is secure.
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Cryptographic Security Definitions

An appropriate security definition for RSA is

Semantic Security under a Chosen-Plaintext Attack

In a chosen-plaintext attack (CPA), the attacker gets free use of the

encryption machinery in the first part of the game.

The attacker wins a semantic security (SS) game if she can learn

anything about an encrypted message, apart from its length.
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Cryptographic Security Definitions

An appropriate security definition for RSA is

Semantic Security under a Chosen-Plaintext Attack

The SS-CPA Game

0. The defender sets up the encryption machinery. (In this case,

he chooses N and e).

1. The attacker submits a message m and receives its encryption

c. She may repeat this as many times as she likes.

2. The attacker submits two messages, m0 and m1, of equal

length. The defender flips a 0/1 coin to obtain a random

bit b. He returns the encryption of mb to the attacker.

3. The attacker tries to guess whether she has been given the

encryption of m0 or m1. If she can guess correctly with

probability significantly greater than 1
2, she wins.
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Cryptographic Security Definitions

Is textbook RSA semantically secure?
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Cryptographic Security Definitions

Is textbook RSA semantically secure? No!

The attacker can win every time:

1. The attacker submits a single message m0 and receives its

encryption c0.

2. The attacker submits m0 and some m1 ̸= m0 of the same

length. The defender returns an encryption c.

3. If c = c0, the attacker says b = 0; otherwise, she says b = 1.

She is correct with probability 1.
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Cryptographic Security Definitions

Is textbook RSA semantically secure? No!

The attacker can win every time:

1. The attacker submits a single message m0 and receives its

encryption c0.

2. The attacker submits m0 and some m1 ̸= m0 of the same

length. The defender returns an encryption c.

3. If c = c0, the attacker says b = 0; otherwise, she says b = 1.

She is correct with probability 1.

Reasonable Question: How can any system be CPA

semantically secure?

Answer: As long as Enc( · ) is a function, it can’t.
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Cryptographic Security Definitions

Is textbook RSA semantically secure? No!

The attacker can win every time:

1. The attacker submits a single message m0 and receives its

encryption c0.

2. The attacker submits m0 and some m1 ̸= m0 of the same

length. The defender returns an encryption c.

3. If c = c0, the attacker says b = 0; otherwise, she says b = 1.

She is correct with probability 1.

Reasonable Question: How can any system be CPA

semantically secure?

Answer: As long as Enc( · ) is a∧
deterministic

function, it can’t.

We need Enc( · ) to be a randomized function.
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Randomized Encryption – What?

M MC

Enc( · ) Dec( · )

In deterministic encryption,

Enc( · ) is a one-to-one function, and Dec( · ) is its inverse.
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Randomized Encryption – What?

M M
C

Enc( · )
Dec( · )

In randomized encryption,

Enc(m) chooses a random point in Dec−1(m).

Consequences of this:

Enc( · ) isn’t really a function.

Dec( · ) is a many-to-one function.

The ciphertext space C is bigger than the message spaceM.
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Randomized Encryption – Why? (1)

Semantic Security in World War II

May 20, 1942: Cryptanalysts at Pearl Harbor partially decrypt a

radio transmission from Admiral Yamamoto. It appears to be an

order to attack location af.

Prior intercepts suggest that af is Midway Island, but Admiral

Nimitz is unwilling to send defense forces to Midway without more

evidence.

The Pearl Harbor cryptanalysts instruct the Allied garrison

at Midway to broadcast, in the clear, a message saying that the

Midway fresh-water distillation plant has broken down.

Two days later, in the intercepts of Japanese radio traffic, Allied

Intelligence finds the message “Location af is short of water.”

Admiral Nimitz is satisfied, and orders defense forces to Midway.
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Randomized Encryption – Why? (2)

Deterministic Encryption Leaks Information

Original message Deterministic encryption
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Randomized Encryption – Why? (2)

Deterministic Encryption Leaks Information

Original message Randomized encryption
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Randomized Encryption – Why? (2)

Deterministic Encryption Leaks Information

Where are we?
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Randomized Encryption – Why? (3)

Deterministic Encryption Doesn’t Work with Small Message Spaces

Bob sends Alice his Social-Security number m

using deterministic RSA:

c = me mod N

Eve intercepts c. She knows e andN , so she can just compute xe mod

N for all 109 values x = d1 d2 d3 − d4 d5 − d6 d7 d8 d9 .

When xe matches c, Eve has found Bob’s secret.

Even better (or worse), if Bob acquired his SSN before

2011 and Eve knows where he lived at the time, her search

space is reduced to only 106 or 107 numbers.
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Randomized encryption – How?

A document called ISO/IEC 18033-2 contains a standard protocol

for using RSA encryption in a semantically-secure way. The protocol

requires:

A symmetric-key encryption scheme

For each k in a keyspace K, we have

Enck :M→ C; Deck = Enc−1k

Each function Enck should be indistinguishable from a random

(invertible) functionM→ C.

A hash function H : ZN → K
Anyone can query H as an oracle, but no one knows its inner

workings. For any set S ⊂ ZN , knowing the values of H(x) for all

x ∈ S should give no information about the value of H(y) for any

y /∈ S.
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RSA KEM/DEM (ISO/IEC)

Encryption: Bob generates a ran-
dom “pre-key” x ∈ ZN . He feeds
x to a (public) hash function to pro-
duce a symmetric key k, which he
uses to encrypt the message m.

He sends Alice the (symmetric-key)
encryption c of m, and the RSA
(public-key) encryption y of x.

Decryption: Alice decrypts y to get
the “pre-key” x. She then uses the
public hash function to recover the
symmetric key k, and decrypts c to
recover m.

x← ZN

m Enck( · )

k=H(x)

y = xe x = yd

k=H(x)

Deck( · ) m

RSA RSA

→ [c = Enck(m)]→

→ [y]→
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RSA KEM/DEM (ISO/IEC)

Eavesdropping: The message is protected by k. If H is a
good hash function, then Eve cannot find k without first
knowing x. By the RSA assumption, Eve cannot recover x
from y.

This system is randomized, so it can be semantically secure.

Furthermore, since the message is protected by k and H,
a partial break of the RSA branch will not give Eve any
information about m.

x← ZN

m Enck( · )

k=H(x)

y = xe x = yd

k=H(x)

Deck( · ) m

RSA RSA

→ [c = Enck(m)]→

→ [y]→
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RSA ISO/IEC KEM/DEM in SSL/TLS (OMG. . . )

Public-key encryption is much slower than private-key encryption, so it’s

typically used only at the beginning of a session to enchange the keys

that will be used for encrypting the real stuff.

Client Server

Hello? Server?
Hi! Here’s my public encryption
key: pk, and here’s a note from my
CA.

[If the CA says OK, then . . . ]

Here’s a random pmk. I’ll send it
to you using the RSA KEM/DEM
scheme from the previous slide.

Got it. Now we both know pmk.

[Calculates AES keys from pmk] [Calculates AES keys from pmk]
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RSA ISO/IEC KEM/DEM in SSL/TLS (OMG. . . )

Public-key encryption is much slower than private-key encryption, so it’s

typically used only at the beginning of a session to enchange the keys

that will be used for encrypting the real stuff.

Client Server

Hello? Server?
Hi! Here’s my public encryption
key: pk, and here’s a note from my
CA.

[If the CA says OK, then . . . ]

Here’s a random pmk. I’ll send it
to you using the RSA KEM/DEM
scheme from the previous slide.

Got it. Now we both know pmk.

[Calculates
↓

AES keys from pmk] [Calculates
↓

AES keys from pmk]

AES
high-speed

machinery

AES
high-speed

machinery
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