Envelopes And String Art

Gregory Quenell

Activity:

Draw line segments connecting

$$
(0, x) \text { with }(1-x, 0)
$$

for $x=0.1,0.2, \ldots, 0.9$.

Benefits:

- Gives you something to do during calculus class

- Makes a pleasing pattern of intersecting lines

Activity:

Draw line segments connecting

$$
(0, x) \text { with }(1-x, 0)
$$

for $x=0.1,0.2, \ldots, 0.9$.

Benefits:

- Gives you something to do during calculus class

- Makes a pleasing pattern of intersecting lines
- Provides an interesting curve to study

Question:

What curve is this?

Observation:

The curve's defining property is that the sum of the x - and y-intercepts of each of its tangent lines is 1 .

That gives us the condition

$$
y-x \frac{d y}{d x}+x-\frac{y}{d y / d x}=1
$$

Different approach:

For each $\alpha \in[0,1]$, let ℓ_{α} be the line segment connecting

$$
(0, \alpha) \text { with }(1-\alpha, 0) .
$$

If α and β are close together, then the intersection point of ℓ_{α} and ℓ_{β} is close to a point on the curve.

Exercise:

For $\alpha \neq \beta$, the segments ℓ_{α} and ℓ_{β} intersect at the point

$$
(\alpha \beta,(1-\alpha)(1-\beta)) .
$$

Result:

As $\beta \rightarrow \alpha$, the point

$$
(\alpha \beta,(1-\alpha)(1-\beta))
$$

approaches a point on the curve.
Thus, each point on the curve has the form

$$
\lim _{\beta \rightarrow \alpha}(\alpha \beta,(1-\alpha)(1-\beta))
$$

for some α.

This is an easy limit, and we get the parametrization

$$
\left(\alpha^{2},(1-\alpha)^{2}\right), \quad 0 \leq \alpha \leq 1
$$

for our envelope curve.

Remarks:

- The coordinates

$$
x=\alpha^{2} \text { and } y=(1-\alpha)^{2}
$$

satisfy

$$
\sqrt{x}+\sqrt{y}=1
$$

so our curve is (one branch of) a hypocircle with exponent $\frac{1}{2}$.

- Stewart, p. 234, problem 8 says
"Show that the sum of the x - and y-intercepts of any tangent line to the curve $\sqrt{x}+\sqrt{y}=\sqrt{c}$ is equal to c."

Exercise:

The coordinates

$$
x=\alpha^{2} \text { and } y=(1-\alpha)^{2}
$$

satisfy

$$
2(x+y)=(x-y)^{2}+1
$$

Result:

Our envelope curve lies on a parabola in the $u v$-plane, where $u=x+y$ and $v=x-y$.

Exercise:

The coordinates

$$
x=\alpha^{2} \text { and } y=(1-\alpha)^{2}
$$

satisfy

$$
2(x+y)=(x-y)^{2}+1
$$

Result:

Our envelope curve lies on a parabola in the $u v$-plane, where $u=x+y$ and $v=x-y$.

Activity: String Art

Drive nails at equal intervals along two lines, and connect the nails with decorative string.

Activity: String Art

The envelope curves are the images, under a linear transformation, of parabolas tangent to the coordinate axes. That is, they are parabolas tangent to the nailing lines.

Digression: Game Theory

Consider a two-person, non-zero-sum game in which each player has two strategies.

Such a game has four possible payoffs. We list them in a payoff matrix.

We can show the payoffs to Rose and Colin as points in the payoff plane.

Assumptions:

We assume each player adopts a

- Rose plays IA with probability p Rose and IB with probability $1-p$.

	IIA	IIB
IA	$(2,0)$	$(3,6)$
IB	$(4,2)$	$(0,0)$

- Colin plays IIA with probability q and IIB with probability $1-q$

The expected payoff is then

$$
p q(2,0)+p(1-q)(3,6)+(1-p) q(4,2)+(1-p)(1-q)(0,0)
$$

or

$$
p[q(2,0)+(1-q)(3,6)]+(1-p)[q(4,2)+(1-q)(0,0)]
$$

or

$$
q[p(2,0)+(1-p)(4,2)]+(1-q)[p(3,6)+(1-p)(0,0)]
$$

Possible payoff points:

Each value of q determines one point on the line from $(2,0)$ to $(3,6)$ and one point on the line from $(4,2)$ to $(0,0)$.

Then p is the parameter for a line segment between these points.

$$
\begin{aligned}
& p[q(2,0)+(1-q)(3,6)] \\
& \quad+(1-p)[q(4,2)+(1-q)(0,0)]
\end{aligned}
$$

Possible payoff points:
Alternatively, each value of p determines one point on the line from $(2,0)$ to $(4,2)$ and one point on the line from $(3,6)$ to $(0,0)$.

Then q is the parameter for a line segment between these points.

$$
\begin{aligned}
& q[p(2,0)+(1-p)(4,2)] \\
& \quad+(1-q)[p(3,6)+(1-p)(0,0)]
\end{aligned}
$$

Possible payoff points:

Either way, the expected payoff is contained in a region bounded by four lines and a parabolic envelope curve.

If the game is played a large number of times and the average payoff converges to a point outside this region, then the players' randomizing devices are not independent.

This could be due to collusion, espionage, or maybe just poor random-number generators.

Generalization:

Unequal Spacing

Draw line segments ℓ_{α} connecting

Exercise:

Segments ℓ_{α} and ℓ_{β} intersect at the point

$$
\left(\frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}, \frac{Y(\alpha) Y(\beta)(X(\alpha)-X(\beta))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}\right)
$$

Generalization:

Unequal Spacing

To find a point on the envelope curve, we need to compute

$$
\lim _{\beta \rightarrow \alpha}\left(\frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}, \frac{Y(\alpha) Y(\beta)(X(\alpha)-X(\beta))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}\right)
$$

Calculation:

"Plugging in" α for β gives

$$
\begin{gathered}
\left(\frac{X(\alpha) X(\alpha)(Y(\alpha)-Y(\alpha))}{X(\alpha) Y(\alpha)-Y(\alpha) X(\alpha)}, \frac{Y(\alpha) Y(\alpha)(X(\alpha)-X(\alpha))}{X(\alpha) Y(\alpha)-Y(\alpha) X(\alpha)}\right) \\
=\left(\frac{0}{0}, \frac{0}{0}\right)
\end{gathered}
$$

So we try something else ...
The x-coordinate of a point on the envelope is

$$
\lim _{\beta \rightarrow \alpha} \frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}
$$

Calculation: $\lim _{\beta \rightarrow \alpha} \frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}$

$$
\begin{aligned}
& =\lim _{\beta \rightarrow \alpha} \frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-X(\alpha) Y(\alpha)+X(\alpha) Y(\alpha)-Y(\alpha) X(\beta)} \\
& =\lim _{\beta \rightarrow \alpha} \frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha)(Y(\beta)-Y(\alpha))-Y(\alpha)(X(\beta)-X(\alpha))} \\
& =\lim _{\beta \rightarrow \alpha} \frac{X(\alpha) X(\beta)\left(\frac{Y(\beta)-Y(\alpha)}{\beta-\alpha}\right)}{X(\alpha)\left(\frac{Y(\beta)-Y(\alpha)}{\beta-\alpha}\right)-Y(\alpha)\left(\frac{X(\beta)-X(\alpha)}{\beta-\alpha}\right)} \\
& =\frac{X(\alpha) X(\alpha) \cdot \lim _{\beta \rightarrow \alpha} \frac{Y(\beta)-Y(\alpha)}{\beta-\alpha}}{X(\alpha) \cdot \lim _{\beta \rightarrow \alpha} \frac{Y(\beta)-Y(\alpha)}{\beta-\alpha}-Y(\alpha) \cdot \lim _{\beta \rightarrow \alpha} \frac{X(\beta)-X(\alpha)}{\beta-\alpha}} \\
& =\frac{(X(\alpha))^{2} Y^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}
\end{aligned}
$$

Result:

Do the same thing for the y-coordinate

$$
\begin{gathered}
\lim _{\beta \rightarrow \alpha} \frac{Y(\alpha) Y(\beta)(X(\alpha)-X(\beta))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)} \\
\quad=\frac{-(Y(\alpha))^{2} X^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}
\end{gathered}
$$

We get the parametrization

$$
\left(\frac{(X(\alpha))^{2} Y^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}, \frac{-(Y(\alpha))^{2} X^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}\right)
$$

for the envelope curve.

Example:

The picture shows lines generated by

$$
X(\alpha)=4\left(\alpha-\frac{1}{2}\right)^{3}+\frac{1}{2}
$$

along the x-axis and

$$
Y(\alpha)=1-\alpha^{2}
$$

along the y-axis.

The formula from the previous slide gives the parametrization

$$
\left(-\frac{2 \alpha^{3}\left(4 \alpha^{2}-6 \alpha+3\right)}{4 \alpha^{4}-15 \alpha^{2}+12 \alpha-3},-\frac{3(2 \alpha-1)^{2}\left(\alpha^{2}-1\right)^{2}}{4 \alpha^{4}-15 \alpha^{2}+12 \alpha-3}\right)
$$

for the envelope curve.

Example:

A ladder of length L slides down a wall.

What is the envelope curve?

Solution:

We want $(X(\alpha))^{2}+(Y(\alpha))^{2}=L^{2}$,
so we may as well take

$X(\alpha)=L \sin (\alpha)$ and $Y(\alpha)=L \cos (\alpha)$.

Example:

A ladder of length L slides down a wall.

What is the envelope curve?

Solution:

We want $(X(\alpha))^{2}+(Y(\alpha))^{2}=L^{2}$,
so we may as well take

$X(\alpha)=L \sin (\alpha)$ and $Y(\alpha)=L \cos (\alpha)$.
We get

$$
\begin{gathered}
\left(\frac{(X(\alpha))^{2} Y^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}, \frac{-(Y(\alpha))^{2} X^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}\right) \\
=\left(L \sin ^{3}(\alpha), L \cos ^{3}(\alpha)\right)
\end{gathered}
$$

Remarks:

The envelope curve, parametrized by

$$
x=L \sin ^{3}(\alpha) \text { and } y=L \cos ^{3}(\alpha)
$$

has equation

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=L^{\frac{2}{3}}
$$

(This is called an astroid.)

Remarks:

The envelope curve, parametrized by

$$
x=L \sin ^{3}(\alpha) \text { and } y=L \cos ^{3}(\alpha)
$$

has equation

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=L^{\frac{2}{3}}
$$

(This is called an astroid.)

So if you want to carry your ladder around a corner from a hallway of width x into a hallway of width y, the length of the ladder has to satisfy

$$
L^{\frac{2}{3}} \leq x^{\frac{2}{3}}+y^{\frac{2}{3}}
$$

Further Generalization:

Instead of using the axes as nailing lines, use parametrized curves

$$
\left(X_{1}(\alpha), Y_{1}(\alpha)\right) \text { and }\left(X_{2}(\alpha), Y_{2}(\alpha)\right)
$$

Exercise:

Find the intersection point of ℓ_{α} and ℓ_{β}, and show that as $\beta \rightarrow \alpha$, this
 point approaches

$$
\begin{aligned}
& x=\frac{\left(X_{1} X_{2}^{\prime}-X_{1}^{\prime} X_{2}\right)\left(Y_{2}-Y_{1}\right)-\left(X_{1} Y_{2}^{\prime}-Y_{1}^{\prime} X_{2}\right)\left(X_{2}-X_{1}\right)}{\left(X_{2}^{\prime}-X_{1}^{\prime}\right)\left(Y_{2}-Y_{1}\right)-\left(Y_{2}^{\prime}-Y_{1}^{\prime}\right)\left(X_{2}-X_{1}\right)} \\
& y=\frac{\left(Y_{1} X_{2}^{\prime}-X_{1}^{\prime} Y_{2}\right)\left(Y_{2}-Y_{1}\right)-\left(Y_{1} Y_{2}^{\prime}-Y_{1}^{\prime} Y_{2}\right)\left(X_{2}-X_{1}\right)}{\left(X_{2}^{\prime}-X_{1}^{\prime}\right)\left(Y_{2}-Y_{1}\right)-\left(Y_{2}^{\prime}-Y_{1}^{\prime}\right)\left(X_{2}-X_{1}\right)}
\end{aligned}
$$

Example:

Let

$$
\begin{aligned}
X_{1}(\alpha) & =\cos (\alpha) \\
Y_{1}(\alpha) & =\sin (\alpha) \\
X_{2}(\alpha) & =\cos (2 \alpha) \\
Y_{2}(\alpha) & =\sin (2 \alpha)
\end{aligned}
$$

Interpretations:

- Drive nails around a circle at regular intervals. Connect nail 1 to nail 2, 2 to 4,3 to 6,4 to 8,5 to 10 , and so on.
- (Simoson, 2000) Two runners set off around a circular track with a bungee cord stretched between them. The second runner goes twice as fast as the first.

Yet Another Exercise:
Substitute

into

$$
\begin{aligned}
& x=\frac{\left(X_{1} X_{2}^{\prime}-X_{1}^{\prime} X_{2}\right)\left(Y_{2}-Y_{1}\right)-\left(X_{1} Y_{2}^{\prime}-Y_{1}^{\prime} X_{2}\right)\left(X_{2}-X_{1}\right)}{\left(X_{2}^{\prime}-X_{1}^{\prime}\right)\left(Y_{2}-Y_{1}\right)-\left(Y_{2}^{\prime}-Y_{1}^{\prime}\right)\left(X_{2}-X_{1}\right)} \\
& y=\frac{\left(Y_{1} X_{2}^{\prime}-X_{1}^{\prime} Y_{2}\right)\left(Y_{2}-Y_{1}\right)-\left(Y_{1} Y_{2}^{\prime}-Y_{1}^{\prime} Y_{2}\right)\left(X_{2}-X_{1}\right)}{\left(X_{2}^{\prime}-X_{1}^{\prime}\right)\left(Y_{2}-Y_{1}\right)-\left(Y_{2}^{\prime}-Y_{1}^{\prime}\right)\left(X_{2}-X_{1}\right)}
\end{aligned}
$$

and simplify.

Answer:

$$
\begin{aligned}
& x=\frac{\cos 2 \alpha+2 \cos \alpha}{3} \\
& y=\frac{\sin 2 \alpha+2 \sin \alpha}{3}
\end{aligned}
$$

Answer:

$$
\begin{aligned}
& x=\frac{\cos 2 \alpha+2 \cos \alpha}{3} \\
& y=\frac{\sin 2 \alpha+2 \sin \alpha}{3}
\end{aligned}
$$

Answer:

$$
\begin{aligned}
& x=\frac{\cos 2 \alpha+2 \cos \alpha}{3} \\
& y=\frac{\sin 2 \alpha+2 \sin \alpha}{3}
\end{aligned}
$$

Write this as

$$
x=\frac{2}{3} \cos \alpha+\frac{1}{3} \cos 2 \alpha, \quad y=\frac{2}{3} \sin \alpha+\frac{1}{3} \sin 2 \alpha
$$

to see that our curve is an epicycloid, traced by a point on a circle of radius $\frac{1}{3}$ rolling around the outside of a fixed circle of radius $\frac{1}{3}$.

Conclusion:

The parabola, the astroid, and the epicycloid are all easy string-art curves.
Some other easy ones are the hyperbola and the circle.

References:

- Édouard Goursat, A Course in Mathematical Analysis. Bover, 1959, Volume I, Chapter X.
- GQ, Envelopes and String Art, to appear in Mathematics Magazine.
- Andrew J. Simoson, The trochoid as a tace in a bungee cord, Mathematics Magazine 73(3), 2000
- Philip D. Straffin, Game Theory and Strategy, MAA, 1993.
- David H. Von Seggem, CRC Standard Curves and Surfaces, CRC Press, 1993.

