
Envelopes and
String Art

Gregory Quenell
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1Activity:

Draw line segments connecting

(0, x) with (1− x, 0)

for x = 0.1, 0.2, . . . , 0.9.

Benefits:

• Gives you something to do during

calculus class

• Makes a pleasing pattern of inter-

secting lines
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1Activity:

Draw line segments connecting

(0, x) with (1− x, 0)

for x = 0.1, 0.2, . . . , 0.9.

Benefits:

• Gives you something to do during

calculus class

• Makes a pleasing pattern of inter-

secting lines

• Provides an interesting curve to study
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1Question:

What curve is this?

Observation:

The curve’s defining property is that

the sum of the x- and y-intercepts of

each of its tangent lines is 1.

That gives us the condition

y − x
dy

dx
+ x− y

dy/dx
= 1
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`α
¡ª

`β
-

(0, α)

(0, β)

(1− β, 0) (1− α, 0)

Different approach:

For each α ∈ [0, 1], let `α be the line

segment connecting

(0, α) with (1− α, 0).

If α and β are close together, then the

intersection point of `α and `β is close

to a point on the curve.

Exercise:

For α 6= β, the segments `α and `β in-

tersect at the point

(αβ, (1− α)(1− β)).
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`α
¡ª

`β
-

Result:

As β → α, the point

(αβ, (1− α)(1− β))

approaches a point on the curve.

Thus, each point on the curve has the

form

lim
β→α

(αβ, (1− α)(1− β))

for some α.

This is an easy limit, and we get the

parametrization

(α2, (1− α)2), 0 ≤ α ≤ 1

for our envelope curve.
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1Remarks:

• The coordinates

x = α2 and y = (1− α)2

satisfy
√

x +
√

y = 1

so our curve is (one branch of) a

hypocircle with exponent 1
2.

• Stewart, p. 234, problem 8 says

“Show that the sum of the x- and y-intercepts of any tangent line to

the curve
√

x +
√

y =
√

c is equal to c.”
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Exercise:

The coordinates

x = α2 and y = (1− α)2

satisfy

2(x + y) = (x− y)2 + 1

Result:

Our envelope curve lies on a parabola

in the uv-plane, where u = x + y and

v = x− y.
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Exercise:

The coordinates

x = α2 and y = (1− α)2

satisfy

2(x + y) = (x− y)2 + 1

Result:

Our envelope curve lies on a parabola

in the uv-plane, where u = x + y and

v = x− y.
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Activity: String Art

Drive nails at equal intervals

along two lines, and connect

the nails with decorative string.
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Activity: String Art

The envelope curves are the images, under a linear transformation, of

parabolas tangent to the coordinate axes. That is, they are parabolas

tangent to the nailing lines.
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Colin

IIA IIB

Rose
IA

IB

(2, 0)

(4, 2)

(3, 6)

(0, 0)

Digression: Game Theory

Consider a two-person, non-zero-sum

game in which each player has two

strategies.

P
ay

off
to

C
ol

in

Payoff to Rose

(IB,IIB) (IA,IIA)

(IB,IIA)

(IA,IIB)

2

4

6

2 4

Such a game has four possible payoffs.

We list them in a payoff matrix.

We can show the payoffs to Rose and

Colin as points in the payoff plane.
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Colin

IIA IIB

Rose
IA

IB

(2, 0)

(4, 2)

(3, 6)

(0, 0)

Assumptions:

We assume each player adopts a

mixed strategy:

• Rose plays IA with probability p

and IB with probability 1− p.

• Colin plays IIA with probability

q and IIB with probability 1− q

The expected payoff is then

pq(2, 0) + p(1− q)(3, 6) + (1− p)q(4, 2) + (1− p)(1− q)(0, 0)

or
p [q(2, 0) + (1− q)(3, 6)] + (1− p) [q(4, 2) + (1− q)(0, 0)]

or
q [p(2, 0) + (1− p)(4, 2)] + (1− q) [p(3, 6) + (1− p)(0, 0)]
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P
ay

off
to

C
ol

in

Payoff to Rose

(IB,IIB) (IA,IIA)

(IB,IIA)

(IA,IIB)

2

4

6

4

Possible payoff points:

Each value of q determines one point

on the line from (2, 0) to (3, 6) and

one point on the line from (4, 2) to

(0, 0).

Then p is the parameter for a line

segment between these points.

p [q(2, 0) + (1− q)(3, 6)]

+(1− p) [q(4, 2) + (1− q)(0, 0)]

14



P
ay

off
to

C
ol

in

Payoff to Rose

(IB,IIB) (IA,IIA)

(IB,IIA)

(IA,IIB)

2

4

6

4

Possible payoff points:

Alternatively, each value of p

determines one point on the line from

(2, 0) to (4, 2) and one point on the

line from (3, 6) to (0, 0).

Then q is the parameter for a line

segment between these points.

q [p(2, 0) + (1− p)(4, 2)]

+(1− q) [p(3, 6) + (1− p)(0, 0)]
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P
ay

off
to

C
ol

in

Payoff to Rose

(IB,IIB) (IA,IIA)

(IB,IIA)

(IA,IIB)

2

4

6

4

Possible payoff points:

Either way, the expected payoff is

contained in a region bounded by

four lines and a parabolic envelope

curve.

If the game is played a large number of

times and the average payoff converges

to a point outside this region, then the

players’ randomizing devices are not

independent.

This could be due to collusion, espionage, or maybe just poor

random-number generators.
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(0, Y (α))

(0, Y (β))

(X(α), 0) (X(β), 0)

Generalization:

Unequal Spacing

Draw line segments `α connecting

(X(α), 0) with (0, Y (α))

for arbitrary differentiable functions

X and Y .

These are “spacing functions”.

Exercise:

Segments `α and `β intersect at the point

(
X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)− Y (α)X(β)
,
Y (α)Y (β)(X(α)−X(β))

X(α)Y (β)− Y (α)X(β)

)

17



(0, Y (α))

(X(α), 0)

Generalization:

Unequal Spacing

To find a point on the envelope

curve, we need to compute

lim
β→α

(
X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)− Y (α)X(β)
,
Y (α)Y (β)(X(α)−X(β))

X(α)Y (β)− Y (α)X(β)

)
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Calculation:

“Plugging in” α for β gives

(
X(α)X(α)(Y (α)− Y (α))

X(α)Y (α)− Y (α)X(α)
,
Y (α)Y (α)(X(α)−X(α))

X(α)Y (α)− Y (α)X(α)

)

=

(
0

0
,
0

0

)

So we try something else . . .

The x-coordinate of a point on the envelope is

lim
β→α

X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)− Y (α)X(β)
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Calculation: lim
β→α

X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)− Y (α)X(β)

= lim
β→α

X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)−X(α)Y (α) + X(α)Y (α)− Y (α)X(β)

= lim
β→α

X(α)X(β)(Y (β)− Y (α))

X(α)(Y (β)− Y (α))− Y (α)(X(β)−X(α))

= lim
β→α

X(α)X(β)( Y (β)−Y (α)
β−α )

X(α)( Y (β)−Y (α)
β−α )− Y (α)( X(β)−X(α)

β−α )

=
X(α)X(α) · lim

β→α

Y (β)−Y (α)
β−α

X(α) · lim
β→α

Y (β)−Y (α)
β−α − Y (α) · lim

β→α

X(β)−X(α)
β−α

=
(X(α))2Y ′(α)

X(α)Y ′(α)− Y (α)X ′(α)
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Result:

Do the same thing for the

y-coordinate

lim
β→α

Y (α)Y (β)(X(α)−X(β))

X(α)Y (β)− Y (α)X(β)

=
−(Y (α))2X ′(α)

X(α)Y ′(α)− Y (α)X ′(α)

We get the parametrization

(
(X(α))2Y ′(α)

X(α)Y ′(α)− Y (α)X ′(α)
,

−(Y (α))2X ′(α)

X(α)Y ′(α)− Y (α)X ′(α)

)

for the envelope curve.
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Example:

The picture shows lines generated by

X(α) = 4

(
α− 1

2

)3

+
1

2

along the x-axis and

Y (α) = 1− α2

along the y-axis.

The formula from the previous slide gives the parametrization

(
− 2α3(4α2 − 6α + 3)

4α4 − 15α2 + 12α− 3
,− 3(2α− 1)2(α2 − 1)2

4α4 − 15α2 + 12α− 3

)

for the envelope curve.
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Y (α)





︸ ︷︷ ︸
X(α)

Example:

A ladder of length L slides down a

wall.

What is the envelope curve?

Solution:

We want (X(α))2 + (Y (α))2 = L2,

so we may as well take

X(α) = L sin(α) and Y (α) = L cos(α).
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Y (α)





︸ ︷︷ ︸
X(α)

Example:

A ladder of length L slides down a

wall.

What is the envelope curve?

Solution:

We want (X(α))2 + (Y (α))2 = L2,

so we may as well take

X(α) = L sin(α) and Y (α) = L cos(α).

We get
(

(X(α))2Y ′(α)

X(α)Y ′(α)− Y (α)X ′(α)
,

−(Y (α))2X ′(α)

X(α)Y ′(α)− Y (α)X ′(α)

)

= (L sin3(α), L cos3(α))
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Y (α)





︸ ︷︷ ︸
X(α)

Remarks:

The envelope curve, parametrized by

x = L sin3(α) and y = L cos3(α)

has equation

x
2
3 + y

2
3 = L

2
3

(This is called an astroid.)
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¾ -

6

?

x

y

Remarks:

The envelope curve, parametrized by

x = L sin3(α) and y = L cos3(α)

has equation

x
2
3 + y

2
3 = L

2
3

(This is called an astroid.)

So if you want to carry your ladder around a corner from a hallway of

width x into a hallway of width y, the length of the ladder has to satisfy

L
2
3 ≤ x

2
3 + y

2
3
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Further Generalization:

Instead of using the axes as nailing

lines, use parametrized curves

(X1(α), Y1(α)) and (X2(α), Y2(α))

Exercise:

Find the intersection point of `α and

`β, and show that as β → α, this

point approaches

x =
(X1X

′
2 −X ′

1X2)(Y2 − Y1)− (X1Y
′
2 − Y ′

1X2)(X2 −X1)

(X ′
2 −X ′

1)(Y2 − Y1)− (Y ′
2 − Y ′

1)(X2 −X1)

y =
(Y1X

′
2 −X ′

1Y2)(Y2 − Y1)− (Y1Y
′
2 − Y ′

1Y2)(X2 −X1)

(X ′
2 −X ′

1)(Y2 − Y1)− (Y ′
2 − Y ′

1)(X2 −X1)
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Example:

Let

X1(α) = cos(α)

Y1(α) = sin(α)

X2(α) = cos(2α)

Y2(α) = sin(2α)

Interpretations:

• Drive nails around a circle at regular intervals. Connect nail 1 to nail 2,

2 to 4, 3 to 6, 4 to 8, 5 to 10, and so on.

• (Simoson, 2000) Two runners set off around a circular track with a

bungee cord stretched between them. The second runner goes twice as

fast as the first.
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Yet Another Exercise:

Substitute

X1(α) = cos(α)

Y1(α) = sin(α)

X2(α) = cos(2α)

Y2(α) = sin(2α)

into

x =
(X1X

′
2 −X ′

1X2)(Y2 − Y1)− (X1Y
′
2 − Y ′

1X2)(X2 −X1)

(X ′
2 −X ′

1)(Y2 − Y1)− (Y ′
2 − Y ′

1)(X2 −X1)

y =
(Y1X

′
2 −X ′

1Y2)(Y2 − Y1)− (Y1Y
′
2 − Y ′

1Y2)(X2 −X1)

(X ′
2 −X ′

1)(Y2 − Y1)− (Y ′
2 − Y ′

1)(X2 −X1)

and simplify.

29



Answer:

x =
cos 2α + 2 cos α

3

y =
sin 2α + 2 sin α

3
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Answer:

x =
cos 2α + 2 cos α

3

y =
sin 2α + 2 sin α

3
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Answer:

x =
cos 2α + 2 cos α

3

y =
sin 2α + 2 sin α

3

Write this as

x =
2

3
cos α +

1

3
cos 2α, y =

2

3
sin α +

1

3
sin 2α

to see that our curve is an epicycloid, traced by a point on a circle of radius
1
3 rolling around the outside of a fixed circle of radius 1

3.
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1

2

Conclusion:

The parabola, the astroid, and the

epicycloid are all easy string-art

curves.

Some other easy ones are the

hyperbola and the circle.
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