Variation 1: The near-miss birthday problem
Assuming birthdays are uniformly distributed over 365 days, find $P\left(\begin{array}{c}\text { at least one pair of birthdays } \\ \text { that are either coincident } \\ \text { or adjacent }\end{array}\right)$
in a random sample of n people.

Variation 1: The near-miss birthday problem
Assuming birthdays are uniformly distributed over 365 days, find

in a random sample of n people.

Solution: Use complementation.

$$
\begin{aligned}
P(\text { at least one near miss }) & =1-P(\text { no near misses }) \\
& =1-P(n \text { isolated birthdays })
\end{aligned}
$$

Finding P (n isolated birthdays) - Strategy

$$
\begin{aligned}
& 364 \text { days } \\
& \text { Birthday of } \\
& \text { person } 1 \\
& P(n \text { isolated birthdays })=\frac{\left(\begin{array}{c}
\text { number of ways to place } n-1 \text { birthdays } \\
\text { in } 364 \text { days with no collision } \\
\text { and no two birthdays adjacent }
\end{array}\right)}{\binom{\text { total number of ways to place }}{n-1 \text { birthdays in } 365 \text { days }}} \\
& =\frac{\binom{\text { number of ways to choose }}{n-1 \text { isolated days }} \times(n-1)!}{(365)^{n-1}}
\end{aligned}
$$

Choosing a set of $n-1$ isolated days

Every set of $n-1$ isolated days corresponds to a "gap sequence"

$$
g_{1}, g_{2}, \ldots, g_{n}
$$

$$
\text { in which }\left\{\begin{array}{l}
g_{i} \geq 1 \text { for all } i \\
g_{1}+g_{2}+\cdots+g_{n}=365-n
\end{array}\right.
$$

How many such gap sequences are there?

Counting gap sequences

Let $a_{i}=g_{i}-1$ to see that every gap sequence

$$
g_{1}, g_{2}, \ldots, g_{n}: \quad g_{i} \geq 1 \forall i, \quad \sum_{i} g_{i}=365-n
$$

corresponds to a sequence

$$
a_{1}, a_{2}, \ldots, a_{n}: \quad a_{i} \geq 0 \forall i, \quad \sum_{i} a_{i}=365-2 n
$$

So we want to count

$$
\text { sequences of } n \text { non-negative integers with fixed sum } S \text {. }
$$

This is a standard combinatorial "occupancy" problem.

Counting sequences using dots and bars

We can represent each sequence

$$
a_{1}, a_{2}, \ldots, a_{n}: \quad a_{i} \geq 0 \forall i, \quad \sum_{i} a_{i}=S
$$

using a row of S dots and $n-1$ bars.

The sequence $a_{1}, a_{2}, \ldots, a_{n}$ is determined by the positions of the $n-1$ bars among these $S+n-1$ objects.

It follows that the number of length- n sequences of non-negative integers with sum S is equal to

$$
\binom{S+n-1}{n-1}
$$

Back to the birthday problem

364 days

$P(n$ isolated birthdays $)=\frac{\binom{\text { number of ways to choose }}{n-1 \text { isolated days }} \times(n-1)!}{(365)^{n-1}}$

$$
=\frac{\binom{(365-2 n)+n-1}{n-1} \times(n-1)!}{(365)^{n-1}}
$$

$$
=\frac{\binom{364-n}{n-1} \times(n-1)!}{(365)^{n-1}}
$$

$$
=\frac{(364-n)_{n-1}}{(365)^{n-1}}
$$

More numbers

$P($ shared birthday $)=1-\frac{(365)_{n}}{(365)^{n}}$
$P($ near miss $)=1-\frac{(364-n)_{n-1}}{(365)^{n-1}}$

n	P (shared)	P (near miss)
10	0.117	0.314
14	0.223	0.537
15	0.253	0.590
20	0.411	0.804
23	0.507	0.888
24	0.538	0.909
25	0.569	0.926
30	0.706	0.978
35	0.814	0.995
40	0.891	0.999
41	0.903	0.999
45	0.941	1^{-}
50	0.970	1^{-}

A generalization

$$
P\binom{\text { two birthdays at most }}{k \text { days apart }}=1-\frac{(364-k n)_{n-1}}{(365)^{n-1}}
$$

	Minimum n for	
k	$P>0.5$	$P>0.9$
0	23	41
1	14	24
2	11	19
3	9	16
4	8	14

