Sanders Theater, 1984

Sanders Theater, 1984
What are the chances?

Four out of $12 ?$
Eight out of 300 ?

Variation 2: The multiple birthday problem What is the probability that there is at least one day in the calendar that is the birthday of k or more of the people in a random sample of size n ?

Variation 2: The multiple birthday problem What is the probability that there is at least one day in the calendar that is the birthday of k or more of the people in a random sample of size n ?

Solution: Use complementation: The probability of at least one k-way coincidence is

$$
\begin{aligned}
& 1-P(\text { no } k \text {-way coincidence }) \\
= & 1-P(\text { each day is the birthday of } k-1 \text { or fewer people })
\end{aligned}
$$

MBP Solution (continued):

For $i=1, \ldots, 365$, let X_{i} be the number of people in the random sample whose birthday is day i. Then $\left(X_{1}, X_{2}, \ldots, X_{365}\right)$ is a random vector that follows a multinomial distribution with parameters n and $p_{1}=p_{2}=\cdots=p_{365}=\frac{1}{365}$.

And we want to find $P\left(X_{i} \leq k-1\right.$ for all $\left.i\right)$.

MPB Solution (continued):

The probability distribution for the vector $\left(X_{1}, X_{2}, \ldots, X_{365}\right)$ is

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{365}=x_{365}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{365}!}\left(\frac{1}{365}\right)^{n} \text { if } \sum x_{i}=n
$$

and zero otherwise.

MPB Solution (continued):

The probability distribution for the vector $\left(X_{1}, X_{2}, \ldots, X_{365}\right)$ is

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{365}=x_{365}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{365}!}\left(\frac{1}{365}\right)^{n} \text { if } \sum x_{i}=n
$$

and zero otherwise.
It follows that

$$
P\left(X_{i} \leq k-1 \text { for all } i\right)=\frac{n!}{365^{n}} \sum_{\substack{0 \leq x_{i} \leq k-1 \forall i \\ x_{1}+x_{2}+\cdots+x_{365}=n}} \frac{1}{x_{1}!\cdots x_{365}!}
$$

So we need to take a sum over all 365-tuples $\left(x_{1}, x_{2}, \ldots, x_{365}\right)$ with each x_{i} between 0 and $k-1$ and $x_{1}+x_{2}+\cdots+x_{365}=n$.

MPB Solution (continued):

Set up a generating function

$$
\left.\begin{array}{rl}
\left(\frac{t^{0}}{0!}+\frac{t^{1}}{1!}+\right. & \left.\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right) \\
& \times\left(\frac{t^{0}}{0!}+\frac{t^{1}}{1!}+\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right) \\
& \times \cdots \\
\quad \times\left(\frac{t^{0}}{0!}+\frac{t^{1}}{1!}+\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right)
\end{array}\right\} 365 \text { factors }
$$

The coefficient of t^{n} in this product is the sum of terms $\frac{1}{x_{1}!} \frac{1}{x_{2}!} \cdots \frac{1}{x_{365}!}$ (one factor from each "line"), where
\triangleright each x_{i} is between 0 and $k-1$ inclusive, and
\triangleright the sum of the x_{i} 's is n.

MPB Solution (continued):

Set up a generating function

$$
\left.\begin{array}{rl}
\left(\frac{t^{0}}{0!}+\frac{t^{1}}{1!}+\right. & \left.\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right) \\
& \times\left(\frac{t^{0}}{0!}+\frac{t^{1}}{1!}+\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right) \\
& \times \cdots \\
\quad \times\left(\frac{t^{0}}{0!}+\frac{t^{1}}{1!}+\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right)
\end{array}\right\} 365 \text { factors }
$$

The coefficient of t^{n} in this product is the sum of terms $\frac{1}{x_{1}!} \frac{1}{x_{2}!} \cdots \frac{1}{x_{365}!}$ (one factor from each "line"), where
\triangleright each x_{i} is between 0 and $k-1$ inclusive, and
\triangleright the sum of the x_{i} 's is n.

MPB Solution (conclusion):

The probability of at least one k-way birthday coincidence is

$$
\begin{gathered}
1-\frac{n!}{365^{n}} \quad\left[t^{n}\right]\left(\frac{t^{0}}{0!}+\frac{t^{1}}{1!}+\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right)^{365} \\
\\
\uparrow \\
\text { "the coefficient of } t^{n} \text { in } \ldots \text { " }
\end{gathered}
$$

MPB Solution (conclusion):

The probability of at least one k-way birthday coincidence is

$$
1-\frac{n!}{365^{n}}\left[t^{n}\right]\left(\frac{t^{0}}{0!}+\frac{t^{1}}{1!}+\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right)^{365}
$$

"the coefficient of t^{n} in ..."
And the answer is . . .
The probability of a 4-way coincidence in
 a sample of 12 people is 0.0000100024 .

The probability of an 8-way coincidence in a sample of 300 people is 0.000844482 .

MPB Solution (conclusion):

The probability of at least one k-way birthday coincidence is

$$
1-\frac{n!}{365^{n}}\left[t^{n}\right]\left(\frac{t^{0}}{0!}+\frac{t^{1}}{1!}+\frac{t^{2}}{2!}+\cdots+\frac{t^{k-1}}{(k-1)!}\right)^{365}
$$

"the coefficient of t^{n} in ..."
And the answer is . . .
The probability of a 4-way coincidence in
 a sample of 12 people is 0.0000100024 .

The probability of an 8 -way coincidence
this took 40 seconds in a sample of 300 people is 0.000844482 .

Fun Facts: Did you know ... ?
If there are n people in a room, then there's a $p \%$ chance that some k of them share a birthday.

k	2	3	4	5	6	7	8	9	10
n for 50%	23	88	187	313	460	623	798	986	1182
n for 90%	41	132	260	413	586	773	973	1182	1400

Fun Facts: Did you know ... ?

If there are n people in a room, then there's a $p \%$ chance that some k of them share a birthday.

k	2	3	4	5	6	7	8	9	10
n for 50%	23	88	187	313	460	623	798	986	1182
n for 90%	41	132	260	413	586	773	973	1182	1400

Fun References:

Richard Arratia, Larry Goldstein, and Louis Gordon, "Poisson approximation and the Chen-Stein method," Statistical Science 5(4), 1990.
Persi Diaconis and Frederick Mosteller, "Methods of studying coincidences," Journal of the American Statistical Association 84(408), 1989.
Bruce Levin, "A representation for multinomial cumulative distribution functions," Annals of statistics 9(5), 1981.
\qquad , "On calculations involving the maximum cell frequency," Communications in Statistics: Theory and methods 12(11), 1983.

