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Sanders Theater, 1984
What are the chances?

April 12

April 12
April 12

April 12

Four out of 12? Eight out of 300?
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Variation 2: The multiple birthday problem

JANUARYWhat is the probability that there is

at least one day in the calendar that

is the birthday of k or more of the

people in a random sample of size

n?
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Variation 2: The multiple birthday problem

JANUARYWhat is the probability that there is

at least one day in the calendar that

is the birthday of k or more of the

people in a random sample of size

n?

Assumption: Birthdays are uniformly

distributed over 365 days.

Solution: Use complementation: The probability of at least one k-way

coincidence is

1− P (no k-way coincidence)

= 1− P (each day is the birthday of k−1 or fewer people)

4



MBP Solution (continued):

For i = 1, . . . , 365, let Xi be the number of people in the random

sample whose birthday is day i. Then (X1, X2, . . . , X365) is a random

vector that follows a multinomial distribution with parameters n and

p1 = p2 = · · · = p365 =
1
365.

1 2 3 4 5 363 364 365

n balls

︸ ︷︷ ︸
365 boxes

And we want to find P (Xi ≤ k−1 for all i).
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MPB Solution (continued):

The probability distribution for the vector (X1, X2, . . . , X365) is

P (X1=x1, X2=x2, . . . , X365=x365) =
n!

x1! x2! · · · x365!

(
1

365

)n

if
∑

xi = n

and zero otherwise.
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MPB Solution (continued):

The probability distribution for the vector (X1, X2, . . . , X365) is

P (X1=x1, X2=x2, . . . , X365=x365) =
n!

x1! x2! · · · x365!

(
1

365

)n

if
∑

xi = n

and zero otherwise.

It follows that

P (Xi ≤ k−1 for all i) =
n!

365n

∑
0 ≤ xi ≤ k−1 ∀i

x1+x2+· · ·+x365=n

1

x1! x2! · · · x365!

So we need to take a sum over all 365-tuples (x1, x2, . . . , x365) with

each xi between 0 and k − 1 and x1+x2+· · ·+x365=n.
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MPB Solution (continued):

Set up a generating function

(
t0

0!
+

t1

1!
+

t2

2!
+ · · ·+ tk−1

(k − 1)!

)
×
(
t0

0!
+

t1

1!
+

t2

2!
+ · · ·+ tk−1

(k − 1)!

)
× · · ·

×
(
t0

0!
+

t1

1!
+

t2

2!
+ · · ·+ tk−1

(k − 1)!

)


365 factors

The coefficient of tn in this product is the sum of terms
1

x1!

1

x2!
· · · 1

x365!
(one factor from each “line”), where

� each xi is between 0 and k − 1 inclusive, and

� the sum of the xi’s is n.
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MPB Solution (conclusion):

The probability of at least one k-way birthday coincidence is

1 − n!

365n
[tn]

(
t0

0!
+

t1

1!
+

t2

2!
+ · · · + tk−1

(k − 1)!

)365

↑
“the coefficient of tn in . . . ”
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MPB Solution (conclusion):

The probability of at least one k-way birthday coincidence is

1 − n!

365n
[tn]

(
t0

0!
+

t1

1!
+

t2

2!
+ · · · + tk−1

(k − 1)!

)365

↑
“the coefficient of tn in . . . ”

And the answer is . . .

The probability of a 4-way coincidence in

a sample of 12 people is 0.0000100024.

The probability of an 8-way coincidence

in a sample of 300 people is 0.000844482.
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MPB Solution (conclusion):

The probability of at least one k-way birthday coincidence is

1 − n!

365n
[tn]

(
t0

0!
+

t1

1!
+

t2

2!
+ · · · + tk−1

(k − 1)!

)365

↑
“the coefficient of tn in . . . ”

And the answer is . . .

The probability of a 4-way coincidence in

a sample of 12 people is 0.0000100024.

The probability of an 8-way coincidence

in a sample of 300 people is 0.000844482.

this took 40 seconds
of CPU time.
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Fun Facts: Did you know . . . ?

If there are n people in a room, then there’s a p% chance that some

k of them share a birthday.

k 2 3 4 5 6 7 8 9 10

n for 50% 23 88 187 313 460 623 798 986 1182

n for 90% 41 132 260 413 586 773 973 1182 1400
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