Site-swap Juggling

Ingredients:

- Two hands (L and R)
- Some balls to throw
- A clock, ticking through the integers

$$
\ldots,-2,-1,0,1,2, \ldots
$$

- A sequence ..., $h_{-2}, h_{-1}, h_{0}, h_{1}, h_{2}, \ldots$ of throw heights

Process:

- The hands throw alternately, ..., L, R, L, R, ..., one throw per tick of the clock
- The ball thrown at time t is next thrown at time $t+h_{t}$, so it's in the air for (a little less than) h_{t} ticks.

Example:

Let $h_{t}= \begin{cases}5 & \text { if } t \text { is odd } \\ 1 & \text { if } t \text { is even }\end{cases}$

$$
\ldots, 5,1,5,1,5,1, \ldots
$$

Remarks:

- Since each hand can catch only one ball at a time, we can't have

$$
t_{1}+h_{t_{1}}=t_{2}+h_{t_{2}} \text { for } t_{1} \neq t_{2}
$$

That is, the map $t \mapsto t+h_{t}$ should be injective.

- At each tick of the clock, there should be a ball ready to throw.

That is, the map $t \mapsto t+h_{t}$ should be surjective.

Non-example:

Let $h_{t}=\ldots, 3,2,3,2,3,2, \ldots$

Definition: A sequence

$$
\ldots, h_{-2}, h_{-1}, h_{0}, h_{1}, h_{2}, \ldots
$$

is a juggling pattern if the map

$$
t \mapsto t+h_{t}
$$

is a bijection from \mathbb{Z} to \mathbb{Z}

Non-example: $h_{t}= \begin{cases}3 & \text { if } t \text { is even } \\ 2 & \text { if } t \text { is odd }\end{cases}$

$$
\ldots, 3,2,3,2,3,2, \ldots
$$

t	h_{t}	$t+h_{t}$
\vdots	\vdots	\vdots
-2	3	1
-1	2	1
0	3	3
1	2	3
2	3	5
3	2	5
\vdots	\vdots	\vdots

The map $t \mapsto t+h_{t}$ is clearly not bijective.

Example:

$$
h_{t}=\ldots 4,1,4,4,1,4,4,1,4,4,1,4, \ldots
$$

t	h_{t}	$t+h_{t}$
\vdots	\vdots	\vdots
-3	4	1
-2	1	-1
-1	4	3
0	4	4
1	1	2
2	4	6
3	4	7
4	1	5
5	4	9
\vdots	\vdots	\vdots

The map $t \mapsto t+h_{t}$ appears to be bijective.

Example: $h_{t}=3$ for all t

The map
$t \mapsto t+h_{t}$
is clearly bijective.

Family of examples:

$$
h_{t}=\ldots, c, c, c, c, c, \ldots
$$

is always a juggling pattern for any positive integer c.

$$
c=1
$$

L

$c=2$

$c=3$

More constant patterns:

L

$c=4$

$c=5$

L

$c=6$

Practical matters:

- Since the hands alternate, a throw goes to the opposite hand if h_{t} is odd, and to the same hand if h_{t} is even.
- The number h_{t} measures the ball's time in the air. Height is proportional to the square of flight time, so a $h_{t}=5$ throw is about $(5 / 3)^{2}$ times as high as a $h_{t}=3$ throw.
- In practice, a $h_{t}=2$ throw is a held ball.

Example:

$$
h_{t}=\ldots 2,3,4,2,3,4,2,3,4, \ldots
$$

t	h_{t}	$t+h_{t}$
\vdots	\vdots	\vdots
-3	2	-1
-2	3	1
-1	4	3
0	2	2
1	3	4
2	4	6
3	2	5
4	3	7
5	4	9
\vdots	\vdots	\vdots

The map $t \mapsto t+h_{t}$ appears to be bijective.

Definition: A sequence

$$
\ldots, h_{-2}, h_{-1}, h_{0}, h_{1}, h_{2}, \ldots
$$

is called n-periodic if $h_{t+n}=h_{t}$ for all t.

Example: The sequence

$$
\ldots, 2,3,4,2,3,4,2,3,4, \ldots
$$

is 3-periodic.
It is also 6 -periodic, 9-periodic, 12-periodic, and so on.

Definition: A sequence

$$
\ldots, h_{-2}, h_{-1}, h_{0}, h_{1}, h_{2}, \ldots
$$

is exactly n-periodic if it is n-periodic and is not m-periodic for any positive integer $m<n$.

Proposition: Let $\left\{h_{t}\right\}_{t \in \mathbb{Z}}$ be an n-periodic sequence. Then the map

$$
t \mapsto t+h_{t}
$$

is a bijection from \mathbb{Z} to \mathbb{Z} if and only if the map

$$
t \mapsto\left(t+h_{t}\right) \bmod n
$$

is a bijection from $\{0,1, \ldots, n-1\}$ to $\{0,1, \ldots, n-1\}$.

Proof: Exercise.

Corollary: A sequence $h_{0}, h_{1}, h_{2}, \ldots, h_{n-1}$ defines an n-periodic juggling pattern if and only if the set

$$
\left\{0+h_{0}, 1+h_{1}, 2+h_{2}, \ldots,(n-1)+h_{n-1}\right\},
$$

reduced modulo n, gives the set

$$
\{0,1,2, \ldots, n-1\}
$$

Remark: We now have an easy way to check whether a periodic sequence is a juggling pattern.

Examples:

Period 3

$$
\begin{aligned}
& h_{t}: 245 \\
& t: \frac{012}{221}-\text { No }
\end{aligned}
$$

$$
\begin{array}{rl}
h_{t}: & 1 \\
t & 5 \\
t: & 0 \\
\hline 10 & 1 \\
\hline & 0
\end{array}-\text {-Yes }
$$

Period 4

$$
\begin{array}{rllllll}
h_{t}: & 1 & 4 & 1 & 6 \\
t: & 0 & 1 & 2 & 3 \\
\hline 1 & 1 & 3 & 1
\end{array}-{ }^{-N o}
$$

$$
\begin{array}{rlllll}
h_{t}: & 3 & 4 & 2 & 3 \\
t: & 0 & 1 & 2 & 3 \\
\hline & 1 & 0 & 2
\end{array} \text {-Yes }
$$

Theorem: The number of balls used in a periodic juggling pattern $h_{0}, h_{1}, \ldots, h_{n-1}$ is

$$
\frac{1}{n} \sum_{k=0}^{n-1} h_{k}
$$

Proof:

Choose p large enough so that at the $p^{\text {th }}$ repetition of the pattern, all the balls are in their starting places.

Let \mathcal{B} denote the set of balls. Let $M=\sum_{b \in \mathcal{B}}\left(\begin{array}{c}\text { amount of time ball } \\ b \text { is in the air } \\ \text { through } p \text { periods }\end{array}\right)$.
In theory, every ball is in the air through every tick of the clock, and there are $p n$ ticks of the clock in p periods, so

$$
\begin{equation*}
M=\text { (number of balls) } \times(p n) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
M=(\text { number of balls }) \times(p n) \tag{1}
\end{equation*}
$$

On the other hand, we can calculate M by adding up the heights of all the throws through p periods, so

$$
\begin{equation*}
M=p \sum_{k=0}^{n-1} h_{k} \tag{2}
\end{equation*}
$$

Combining (1) and (2), we have

$$
p n \times(\text { number of balls })=p \sum_{k=0}^{n-1} h_{k}
$$

from which the result follows.

Example:

The $3,4,2,3$ pattern uses $\frac{3+4+2+3}{4}=3$ balls
The $3,4,5$ pattern uses $\frac{3+4+5}{3}=4$ balls

Question: How many 2-periodic three-ball patterns are there?

Answer: The 2-periodic three-ball patterns are
15
24
33
(Only 15 and 24 are exactly 2-periodic.)

Question: How many 2-periodic four-ball patterns are there?

Answer: The 2-periodic four-ball patterns are
17
26
35
44

Question: In general, how many n-periodic b-ball patterns are there?

Theorem: (Buhler et. al. 1994)
The number of n-periodic b-ball juggling patterns is $(b+1)^{n}-b^{n}$.

Remarks: In this theorem, cyclic shifts are counted as distinct patterns, and it counts n-period patterns, rather than just the exact n-periodic ones.

Question: How many 3-periodic three-ball juggling patterns are there?

Answer: The theorem says that there are

$$
4^{3}-3^{3}=64-27=37
$$

three-ball 3 -periodic juggling patterns. One of them is $\ldots, 3,3,3, \ldots$, which isn't exactly 3 -periodic.

Of the remaining 36, each one gets counted three times, because it has three cyclic permutations (for example, $(4,1,4),(1,4,4)$, and $(4,4,1)$ are really all the same pattern). So we have 12 distinct three-ball patterns that are exactly 3 -periodic.

The twelve exactly 3 -periodic three-ball juggling patterns

0	0	9	0	1	8	0	3	6
0	4	5	0	6	3	0	7	2
1	1	7	1	2	6	1	4	4
1	5	3	2	2	5	2	3	4

009:

072:

225:

045:

333:

Closing questions:

- How can we classify and recognize patterns that are just time-dilations of other patterns?
- How many b-ball n-periodic patterns are there that are truly distinct?
- Some patterns look like small embellishments of other patterns. Is there a sensible way to "factor" juggling patterns? What are the primes?
- What does all this have to do with braid theory?

