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The Setting: Alice and Bob want to have a private conversation using

email or texting.
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Bob
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The Setting: Alice and Bob want to have a private conversation using

email or texting.

The Problem: These media are insecure. Anyone can listen in by

intercepting wifi packets.

Alice
Bob

Eve
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The Solution: Encryption. In a symmetric-key or shared-key encryption

scheme, Bob and Alice share a secret key ( KEY ) that Eve doesn’t know.

Alice feeds KEY and her message into an Encryptor, which “locks” the

message so that Eve can’t read it.

Bob uses his copy of KEY in the Decryptor to “unlock” and read the

message.

??

KEY

Hi, Bob!
Encryptor

gbm(,xft

Decryptor

KEY

Hi, Bob!
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A New Problem: How can Alice and Bob agree on a shared key, while

keeping it a secret from Eve?
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A New Problem: How can Alice and Bob agree on a shared key, while

keeping it a secret from Eve?

One possibility: Alice and Bob meet face-to-face, someplace where Eve

can’t hear them.

But . . .

They may not be able to do that. And anyway, if they could meet

face-to-face, they could just have their private conversation then.

More realistically: Can Alice and Bob use the insecure channel, where

Eve can intercept everything, to

• come up with a key that they both know, and

• keep it a secret from Eve?

Surprisingly, the answer is yes.
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The Diffie-Hellman Key Exchange Protocol

. . . allows two people who have no prior knowledge of one another to

establish a

shared secret key

while communicating over an insecure channel.

The Diffie-Hellman protocol was first described in a 1976
paper by Whitfield Diffie and Martin Hellman.

Similar systems had previously been described by American
cryptographer Ralph Merkle, and in classified research at the
Government Communications Headquarters (GCHQ) in
England.

10



Exponentiation in the ring Zp

For g ∈ Zp and a positive integer k, we can compute gk ∈ Zp by

repeatedly multiplying and reducing modulo p.

Example: 3k in Z7. 31 = 3 ≡ 3 (mod 7)

32 = 3× 3 = 9 ≡ 2 (mod 7)

33 = 3× 32 = 3× 2 = 6 ≡ 6 (mod 7)

34 = 3× 33 = 3× 6 = 18 ≡ 4 (mod 7)

35 = 3× 34 = 3× 4 = 12 ≡ 5 (mod 7)

36 = 3× 35 = 3× 5 = 15 ≡ 1 (mod 7)

37 = 3× 36 = 3× 1 = 3 ≡ 3 (mod 7)
... ... ...

The powers of 3 in the system Z7 look like this:

n 0 1 2 3 4 5 6 7 8 · · ·
3n 1 3 2 6 4 5 1 3 2 · · ·
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Exponentiation in the ring Zp

There’s a much faster method, called the square-and-multiply method.

Example: 268 in Z101.

22 = 4 ≡ 4 (mod 101)

24 = (22)2 = 42 = 16 ≡ 16 (mod 101)

28 = (24)2 = 162 = 256 ≡ 54 (mod 101)

216 = (28)2 = 542 = 2916 ≡ 88 (mod 101)

232 = (216)2 = 882 = 7744 ≡ 68 (mod 101)

264 = (232)2 = 682 = 4624 ≡ 79 (mod 101)
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Exponentiation in the ring Zp

There’s a much faster method, called the square-and-multiply method.

Example: 268 in Z101.

22 = 4 ≡ 4 (mod 101)

→ 24 = (22)2 = 42 = 16 ≡ 16 (mod 101)

28 = (24)2 = 162 = 256 ≡ 54 (mod 101)

216 = (28)2 = 542 = 2916 ≡ 88 (mod 101)

232 = (216)2 = 882 = 7744 ≡ 68 (mod 101)

→ 264 = (232)2 = 682 = 4624 ≡ 79 (mod 101)

Now 268 = 264+4 = 264 × 24, so we get

268 = (264)× (24) = 79× 16 = 1264 ≡ 52 (mod 101).

Cost: seven multiplications (with reductions modulo 101).
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Alice and Bob

p = 6827
g = 66

Okay,
p = 6827
g = 66

Aha!
p = 6827
g = 66

• Alice selects a prime p and a base g, and sends these to Bob.

• Eve listens in; she now knows the values of p and g.
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Alice and Bob (p = 6827; g = 66)

a = 14

b = 39

??

◦ Alice chooses a secret exponent a, and doesn’t tell anyone.

◦ Bob chooses a secret exponent b, and doesn’t tell anyone.
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Alice and Bob (p = 6827; g = 66)

a = 14
A = 6614

A = 4851

b = 39
B = 6639

B = 246

??

◦ Alice uses square-and-multiply to compute A = ga.

◦ Bob uses square-and-multiply to compute B = gb.
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Alice and Bob (p = 6827; g = 66)

a = 14
A = 6614

A = 4851

b = 39
B = 6639

B = 246

Aha!
A = 4851
B = 246
Hmm. . .

A = 4851 B = 246

• Alice sends A to Bob, and Bob sends B to Alice.

• Eve now knows the values of g, A = ga, and B = gb.
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Alice and Bob (p = 6827; g = 66)

Key = Ba

= 24614

= 1894

Key = Ab

= 485139

= 1894

??

◦ Bob now computes Ab, which is equal to (ga)b.

◦ Alice now computes Ba, which is equal to (gb)a.

By the laws of exponents, (ga)b = gab = (gb)a, so Bob and Alice have

the same number.
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Alice and Bob (p = 6827; g = 66)

Key =
1894

Key =
1894

ga = 4851
gb = 246
gab = ??

• Alice and Bob, each using square-and-multiply twice, have

independently calculated gab.

• Eve, by listening in, has learned g, ga and gb, but has no good

way to calculate gab from this information.
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Security

The secrecy of the shared key gab relies on the

Computational Diffie-Hellman Assumption

CDH: Let g be a generator of a cyclic group G. Given generic

elements ga and gb, Eve has no efficient algorithm for finding gab:

(ga, gb) 7−→X gab
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Security

The secrecy of the shared key gab relies on the

Computational Diffie-Hellman Assumption

CDH: Let g be a generator of a cyclic group G. Given generic

elements ga and gb, Eve has no efficient algorithm for finding gab:

(ga, gb) 7−→X gab

Proof: There is none. It’s an assumption. (And it depends on G.)

Belief: For certain cyclic groups, Eve’s best approach is to find either

a or b, the discrete logarithms of ga and gb.

DLP (the Discrete Logarithm Problem): Let g be a generator of

a cyclic group G. Given a generic element ga, find a.
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Security

Further belief: For certain cryptographic groups, the fastest DLP

algorithms require somewhat more than
√
|G| arithmetic operations.
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Security

Further belief: For certain cryptographic groups, the fastest DLP

algorithms require somewhat more than
√
|G| arithmetic operations.

Actual fact: The square-and-multiply algorithm for finding (ga)b or

(gb)a requires at most 2 log2 |G| operations.
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Security

Further belief: For certain cryptographic groups, the fastest DLP

algorithms require somewhat more than
√
|G| arithmetic operations.

Actual fact: The square-and-multiply algorithm for finding (ga)b or

(gb)a requires at most 2 log2 |G| operations.

Result: In our toy example, |G| = 6826, so Bob and Alice can find

their shared key gab using no more than

2 log2 6826 ≈ 26 multiplications.

In order to find a and “break in”, Eve’s best algorithm would require

at least √
6826 ≈ 83 multiplications.
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Security

Further belief: For certain cryptographic groups, the fastest DLP

algorithms require somewhat more than
√
|G| arithmetic operations.

Actual fact: The square-and-multiply algorithm for finding (ga)b or

(gb)a requires at most 2 log2 |G| operations.

Result: In our toy example, |G| = 6826, so Bob and Alice can find

their shared key gab using no more than

2 log2 6826 ≈ 26 multiplications.

In order to find a and “break in”, Eve’s best algorithm would require

at least √
6826 ≈ 83 multiplications.

In the toy example, Eve’s task is trivial. There is no secrecy here.

However . . .
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Security

Time at 109/second

|G|
√
|G| log2 |G| Alice/Bob Eve

105 300 17 4.6 µs 87 µs

1015 3× 107 33 120 µs 78 sec

1025 3× 1012 83 570 µs 250 days

1035 3× 1017 116 1.6 ms 1.4× 105 yr

1045 3× 1022 149 3.3 ms 2.2× 1010 yr

1050 1025 166 4.6 ms 8.7× 1012 yr
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Security

Time at 109/second

|G|
√
|G| log2 |G| Alice/Bob Eve

105 300 17 4.6 µs 87 µs

1015 3× 107 33 120 µs 78 sec

1025 3× 1012 83 570 µs 250 days

1035 3× 1017 116 1.6 ms 1.4× 105 yr

1045 3× 1022 149 3.3 ms 2.2× 1010 yr

1050 1025 166 4.6 ms 8.7× 1012 yr

Moral: When |G| ≈ 1050, we get pretty good security.(
NIST recommends that |G| should be at least 1068, and that G

should be hidden inside a bigger group with order at least 10616.

)
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