String Art and Calculus

(and Games with Envelopes)

Gregory Quenell

First example
Draw line segments connecting

$$
(0, x) \text { with }(1-x, 0)
$$

for $x=0.1,0.2, \ldots, 0.9$.

First example

Draw line segments connecting

$$
(0, x) \text { with }(1-x, 0)
$$

for $x=0.1,0.2, \ldots, 0.9$.
This gives a pleasing arrangement of lines and ...

First example
Draw line segments connecting

$$
(0, x) \text { with }(1-x, 0)
$$

for $x=0.1,0.2, \ldots, 0.9$.
This gives a pleasing arrangement of lines and ...
... an interesting curve to study.

First example
Draw line segments connecting

$$
(0, x) \text { with }(1-x, 0)
$$

for $x=0.1,0.2, \ldots, 0.9$.
This gives a pleasing arrangement of lines and...
... an interesting curve to study.

What curve is it?

Finding the envelope
For each $\alpha \in[0,1]$, let ℓ_{α} be the line segment connecting

$$
(0, \alpha) \text { with }(1-\alpha, 0) .
$$

Finding the envelope
For each $\alpha \in[0,1]$, let ℓ_{α} be the line segment connecting

$$
(0, \alpha) \text { with }(1-\alpha, 0)
$$

If α and β are close together, then the intersection point of ℓ_{α} and ℓ_{β} is close to a point on the curve.

Finding the envelope
For each $\alpha \in[0,1]$, let ℓ_{α} be the line segment connecting

$$
(0, \alpha) \text { with }(1-\alpha, 0)
$$

If α and β are close together, then the intersection point of ℓ_{α} and ℓ_{β} is close to a point on the curve.

Exercise: For $\alpha \neq \beta$, the segments ℓ_{α} and ℓ_{β} intersect at the point

$$
(\alpha \beta,(1-\alpha)(1-\beta)) .
$$

Finding the envelope

As $\beta \rightarrow \alpha$, the point

$$
(\alpha \beta,(1-\alpha)(1-\beta))
$$

approaches a point on the curve.
Thus, each point on the curve has the form

$$
\begin{aligned}
& \lim _{\beta \rightarrow \alpha}(\alpha \beta,(1-\alpha)(1-\beta)) \\
& \text { for some } \alpha .
\end{aligned}
$$

Finding the envelope

As $\beta \rightarrow \alpha$, the point

$$
(\alpha \beta,(1-\alpha)(1-\beta))
$$

approaches a point on the curve.
Thus, each point on the curve has the form

$$
\begin{aligned}
& \lim _{\beta \rightarrow \alpha}(\alpha \beta,(1-\alpha)(1-\beta)) \\
& \text { for some } \alpha .
\end{aligned}
$$

This is an easy limit, and we get the parametrization

$$
\left(\alpha^{2},(1-\alpha)^{2}\right), \quad 0 \leq \alpha \leq 1
$$

for our envelope curve.

Finding the envelope
The coordinates

$$
x=\alpha^{2} \text { and } y=(1-\alpha)^{2}
$$

satisfy

$$
\sqrt{x}+\sqrt{y}=1
$$

so our curve is one branch of a hypocircle with exponent $\frac{1}{2}$.

Finding the envelope
The coordinates

$$
x=\alpha^{2} \text { and } y=(1-\alpha)^{2}
$$

satisfy

$$
\sqrt{x}+\sqrt{y}=1
$$

so our curve is one branch of a hypocircle with exponent $\frac{1}{2}$.

Stewart 4/e, p. 191, problem 38 says
"Show that the sum of the x - and y-intercepts of any tangent line to the curve $\sqrt{x}+\sqrt{y}=\sqrt{c}$ is equal to c."

Parabolas

The coordinates

$$
x=\alpha^{2} \text { and } y=(1-\alpha)^{2}
$$

also satisfy

$$
2(x+y)=(x-y)^{2}+1
$$

Our envelope curve is part of a parabola, tangent to the coordinate axes at $(1,0)$ and $(0,1)$.

Parabolas

The coordinates

$$
x=\alpha^{2} \text { and } y=(1-\alpha)^{2}
$$

also satisfy

$$
2(x+y)=(x-y)^{2}+1
$$

Our envelope curve is part of a parabola, tangent to the coordinate axes at $(1,0)$ and $(0,1)$.

In the classical theory of conic sections, our envelope has focus $\left(\frac{1}{2}, \frac{1}{2}\right)$ and directrix $\quad x+y=0$.

An easy generalization

Pick equally-spaced points along (almost) any two lines, and do the same thing. You get an image of our parabola under a linear transformation.

An easy generalization

Pick equally-spaced points along (almost) any two lines, and do the same thing. You get an image of our parabola under a linear transformation. It's another parabola.

Application: String art

Drive nails at equal intervals along two lines, and connect the nails with decorative string.

Application: String art

Drive nails at equal intervals along two lines, and connect the nails with decorative string.

You get a pleasing pattern of intersecting lines (mostly), and...

Application: String art

Drive nails at equal intervals along two lines, and connect the nails with decorative string.

You get a pleasing pattern of intersecting lines (mostly), and...

... envelope curves that lie on parabolas tangent to the nailing lines.

Application: game theory

Consider a two-person, non-zero-sum game in which each player has two strategies.

(IA,IIB)
-

		IIA	IIB
Rose	IA	$(2,0)$	$(3,6)$
	IB	$(4,2)$	$(0,0)$

Such a game has four possible payoffs. We list them in a payoff matrix.

We can show the payoffs to Rose and Colin as points in the payoff plane.

We assume each player adopts a randomized mixed strategy:

- Rose plays IA with probability p Rose and IB with probability $1-p$.
- Colin plays IIA with probability q and IIB with probability $1-q$

The expected payoff is then

$$
p q(2,0)+p(1-q)(3,6)+(1-p) q(4,2)+(1-p)(1-q)(0,0)
$$

or

$$
p[q(2,0)+(1-q)(3,6)]+(1-p)[q(4,2)+(1-q)(0,0)]
$$

or

$$
q[p(2,0)+(1-p)(4,2)]+(1-q)[p(3,6)+(1-p)(0,0)]
$$

Possible expected payoffs
Each value of q determines one point on the line from $(2,0)$ to $(3,6)$ and one point on the line from $(4,2)$ to $(0,0)$.

Then p is the parameter for a line segment between these points.

$$
\begin{aligned}
& p[q(2,0)+(1-q)(3,6)] \\
& \quad+(1-p)[q(4,2)+(1-q)(0,0)]
\end{aligned}
$$

Possible expected payoffs
Alternatively, each value of p determines one point on the line from $(2,0)$ to $(4,2)$ and one point on the line from $(3,6)$ to $(0,0)$.

Then q is the parameter for a line segment between these points.

$$
\begin{aligned}
& q[p(2,0)+(1-p)(4,2)] \\
& \quad+(1-q)[p(3,6)+(1-p)(0,0)]
\end{aligned}
$$

Possible expected payoffs

Either way, the expected payoff is contained in a region bounded by four lines and a parabolic envelope curve.

If the game is played a large number of times and the average payoff converges to a point outside this region, then the players' randomizing devices are not independent.

This could be due to collusion, espionage, or maybe just poor random-number generators.

Generalization: spacing functions

Draw line segments ℓ_{α} connecting

$$
(X(\alpha), 0) \text { with }(0, Y(\alpha))
$$

for arbitrary differentiable functions X and Y.
These are "spacing functions".

Generalization: spacing functions

Draw line segments ℓ_{α} connecting

$$
(X(\alpha), 0) \text { with }(0, Y(\alpha))
$$

for arbitrary differentiable functions X and Y.
These are "spacing functions".

Exercise:

Segments ℓ_{α} and ℓ_{β} intersect at the point

$$
\left(\frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}, \frac{Y(\alpha) Y(\beta)(X(\alpha)-X(\beta))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}\right)
$$

Generalization: spacing functions

To find a point on the envelope curve, we need to compute the limit of this intersection point as $\beta \rightarrow \alpha$.

That is, we need to find

$$
\lim _{\beta \rightarrow \alpha}\left(\frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}, \frac{Y(\alpha) Y(\beta)(X(\alpha)-X(\beta))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}\right)
$$

Some calculus

"Plugging in" α for β gives

$$
\begin{gathered}
\left(\frac{X(\alpha) X(\alpha)(Y(\alpha)-Y(\alpha))}{X(\alpha) Y(\alpha)-Y(\alpha) X(\alpha)}, \frac{Y(\alpha) Y(\alpha)(X(\alpha)-X(\alpha))}{X(\alpha) Y(\alpha)-Y(\alpha) X(\alpha)}\right) \\
=\left(\frac{0}{0}, \frac{0}{0}\right)
\end{gathered}
$$

Some calculus

"Plugging in" α for β gives

$$
\begin{gathered}
\left(\frac{X(\alpha) X(\alpha)(Y(\alpha)-Y(\alpha))}{X(\alpha) Y(\alpha)-Y(\alpha) X(\alpha)}, \frac{Y(\alpha) Y(\alpha)(X(\alpha)-X(\alpha))}{X(\alpha) Y(\alpha)-Y(\alpha) X(\alpha)}\right) \\
=\left(\frac{0}{0}, \frac{0}{0}\right)
\end{gathered}
$$

So we try something else ...

$$
\lim _{\beta \rightarrow \alpha}\left(\frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}, \frac{Y(\alpha) Y(\beta)(X(\alpha)-X(\beta))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}\right)
$$

Some calculus
We get $\lim _{\beta \rightarrow \alpha} \frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}$
$=\lim _{\beta \rightarrow \alpha} \frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha) Y(\beta)-X(\alpha) Y(\alpha)+X(\alpha) Y(\alpha)-Y(\alpha) X(\beta)}$
$=\lim _{\beta \rightarrow \alpha} \frac{X(\alpha) X(\beta)(Y(\beta)-Y(\alpha))}{X(\alpha)(Y(\beta)-Y(\alpha))-Y(\alpha)(X(\beta)-X(\alpha))}$
$=\lim _{\beta \rightarrow \alpha} \frac{X(\alpha) X(\beta)\left(\frac{Y(\beta)-Y(\alpha)}{\beta-\alpha}\right)}{X(\alpha)\left(\frac{Y(\beta)-Y(\alpha)}{\beta-\alpha}\right)-Y(\alpha)\left(\frac{X(\beta)-X(\alpha)}{\beta-\alpha}\right)}$
$=\frac{X(\alpha) X(\alpha) \cdot \lim _{\beta \rightarrow \alpha} \frac{Y(\beta)-Y(\alpha)}{\beta-\alpha}}{X(\alpha) \cdot \lim _{\beta \rightarrow \alpha} \frac{Y(\beta)-Y(\alpha)}{\beta-\alpha}-Y(\alpha) \cdot \lim _{\beta \rightarrow \alpha} \frac{X(\beta)-X(\alpha)}{\beta-\alpha}}$
$=\frac{(X(\alpha))^{2} Y^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}$

Some calculus

Doing the same thing for the y-coordinate, we get

$$
\lim _{\beta \rightarrow \alpha} \frac{Y(\alpha) Y(\beta)(X(\alpha)-X(\beta))}{X(\alpha) Y(\beta)-Y(\alpha) X(\beta)}=\frac{-(Y(\alpha))^{2} X^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}
$$

We get the parametrization

$$
\left(\frac{(X(\alpha))^{2} Y^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}, \frac{-(Y(\alpha))^{2} X^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}\right)
$$

for the envelope curve.

Example

A ladder of length L slides down a wall. What is the envelope curve?

Example

A ladder of length L slides down a wall. What is the envelope curve?

Solution: We want

$$
(X(\alpha))^{2}+(Y(\alpha))^{2}=L^{2}
$$

so we may as well take

$$
\begin{aligned}
& X(\alpha)=L \sin (\alpha), \\
& Y(\alpha)=L \cos (\alpha) .
\end{aligned}
$$

Example

A ladder of length L slides down a wall. What is the envelope curve?

Solution: We want

$$
(X(\alpha))^{2}+(Y(\alpha))^{2}=L^{2}
$$

so we may as well take

$$
\begin{aligned}
& X(\alpha)=L \sin (\alpha), \\
& Y(\alpha)=L \cos (\alpha) .
\end{aligned}
$$

We get

$$
\begin{gathered}
\left(\frac{(X(\alpha))^{2} Y^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}, \frac{-(Y(\alpha))^{2} X^{\prime}(\alpha)}{X(\alpha) Y^{\prime}(\alpha)-Y(\alpha) X^{\prime}(\alpha)}\right) \\
=\left(L \sin ^{3}(\alpha), L \cos ^{3}(\alpha)\right)
\end{gathered}
$$

Remarks

The envelope curve, parametrized by

$$
x=L \sin ^{3}(\alpha) \text { and } y=L \cos ^{3}(\alpha)
$$

has equation

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=L^{\frac{2}{3}}
$$

(This is called an astroid.)

Remarks

The envelope curve, parametrized by

$$
x=L \sin ^{3}(\alpha) \text { and } y=L \cos ^{3}(\alpha)
$$

has equation

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=L^{\frac{2}{3}}
$$

(This is called an astroid.)

So if you want to carry your ladder around a corner from a hallway of width x into a hallway of width y, the length of the ladder has to satisfy

$$
L^{\frac{2}{3}} \leq x^{\frac{2}{3}}+y^{\frac{2}{3}}
$$

Another generalization

Instead of placing the nails along lines, use parametrized curves
$\left(X_{1}(\alpha), Y_{1}(\alpha)\right)$ and $\left(X_{2}(\alpha), Y_{2}(\alpha)\right)$

Exercise: Find the intersection point of ℓ_{α} and ℓ_{β}, and show that as $\beta \rightarrow \alpha$, this point approaches

$$
\begin{aligned}
x & =\frac{\left(X_{1} X_{2}^{\prime}-X_{1}^{\prime} X_{2}\right)\left(Y_{2}-Y_{1}\right)-\left(X_{1} Y_{2}^{\prime}-Y_{1}^{\prime} X_{2}\right)\left(X_{2}-X_{1}\right)}{\left(X_{2}^{\prime}-X_{1}^{\prime}\right)\left(Y_{2}-Y_{1}\right)-\left(Y_{2}^{\prime}-Y_{1}^{\prime}\right)\left(X_{2}-X_{1}\right)} \\
y & =\frac{\left(Y_{1} X_{2}^{\prime}-X_{1}^{\prime} Y_{2}\right)\left(Y_{2}-Y_{1}\right)-\left(Y_{1} Y_{2}^{\prime}-Y_{1}^{\prime} Y_{2}\right)\left(X_{2}-X_{1}\right)}{\left(X_{2}^{\prime}-X_{1}^{\prime}\right)\left(Y_{2}-Y_{1}\right)-\left(Y_{2}^{\prime}-Y_{1}^{\prime}\right)\left(X_{2}-X_{1}\right)}
\end{aligned}
$$

References

- Édouard Goursat, A Course in Mathematical Analysis Dover, 1959, Volume I, Chapter X.
- GQ, Envelopes and String Art, Mathematics Magazine 82(3), 2009.
- John W. Rutter, Geonetry of Curves, Giapman \& Hall/CRC, 2000.
- Andrew J. Simoson. The trochoid as a tack in a bungee cord, Mathematics Magazine TF 3 , 2000.
- Philip D. Straffí, Gamue Theory and Strategy, MAAA, 1993.
- David H. Vor Seqsern, CRC Standard Curves and Surfaces, CRC Press, 1993.

