String Art and Calculus

(and Games with Envelopes)

Gregory Quenell




First example

Draw line segments connecting
(0,z) with (1 —x,0)
for x = 0.1, 0.2, ..., 0.9.
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First example

Draw line segments connecting
(0,z) with (1 —x,0)
for x = 0.1, 0.2, ..., 0.9.
This gives a pleasing arrangement of
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... an interesting curve to study:.




First example

Draw line segments connecting
(0,z) with (1 —x,0)
for x = 0.1, 0.2, ..., 0.9.
This gives a pleasing arrangement of

lines and . ..
... an interesting curve to study:.

What curve is it?




Finding the envelope

For each o € [0, 1], let ¢, be the line
segment connecting

(0,) with (1 — «,0),
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If o and 3 are close together, then the
intersection point of £, and £z is close
to a point on the curve.




Finding the envelope

For each o € [0, 1], let ¢, be the line
segment connecting

(0,) with (1 — «,0),

If o and 3 are close together, then the
intersection point of £, and £z is close
to a point on the curve.

(1-5,0) (1-0,0)

Exercise: For a # 3, the segments ¢, and {3 intersect at the point

(af, (1 = a)(1 = §)).




Finding the envelope

As 8 — «, the point
(B, (1 = a)(1 = 3))

approaches a point on the curve.

Thus, each point on the curve has the
form

lim (af, (1 —a)(1 = f))

b—a

for some «.




Finding the envelope

As 8 — «, the point
(B, (1 = a)(1 = 3))

approaches a point on the curve.

Thus, each point on the curve has the
form

lim (af, (1 —a)(1 = f))

b—a

for some «.

This is an easy limit, and we get the parametrization

(@*,(1-a)), 0<a<l

for our envelope curve.
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Finding the envelope

The coordinates
r=0a and y=(1—a)

satisty

Vo +/y=1

so our curve is one branch of a
. . 1
hypocircle with exponent 3.
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Finding the envelope

The coordinates
r=0a and y=(1—a)

satisty

Vo +/y=1

so our curve is one branch of a
o . 1
hypocircle with exponent 3.

Stewart 4 /e, p. 191, problem 38 says

“Show that the sum of the x- and y-intercepts of any tangent
line to the curve /= + \/y = \/c is equal to ¢.”
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Parabolas

The coordinates
r=0a and y=(1—a)’
also satisfy

20 +y) = (x—y)*+1

Our envelope curve is part of a
parabola, tangent to the coordinate
axes at (1,0) and (0, 1).
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Parabolas

The coordinates
r=0a and y=(1—a)’
also satisfy

20 +y) = (x—y)*+1

Our envelope curve is part of a
parabola, tangent to the coordinate
axes at (1,0) and (0, 1).

——

1

In the classical theory of conic sections, our envelope has

focus (1 1) and directrix

272

/

2

x+1y=0.
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An easy generalization

Pick equally-spaced points along (almost) any two lines, and do the same
thing. You get an image of our parabola under a linear transformation.




An easy generalization

Pick equally-spaced points along (almost) any two lines, and do the same
thing. You get an image of our parabola under a linear transformation.
It’s another parabola.




Application: String art

Drive nails at equal intervals
along two lines, and connect
the nails with decorative
string.
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Application: String art

Drive nails at equal intervals
along two lines, and connect
the nails with decorative
string.

You get a pleasing pattern of
intersecting lines (mostly),
and . ..
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Application: String art

Drive nails at equal intervals
along two lines, and connect
the nails with decorative
string.

You get a pleasing pattern of
intersecting lines (mostly),
and . ..

... envelope curves that lie on parabolas tangent to the nailing lines.
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Payoff to Colin

Application: game theory Colin

Consider a two-person, non-zero-sum [TA 1B
game in which each player has two A (2,0)  (3,6)
strategies. Rose

B (4,2) (0,0)
; (IA.IIB)

Such a game has four possible payoffs.
A We list them in a payoff matrix.

We can show the payoffs to Rose and

Colin as points in the payoff plane.
2 «(IB,IIA)

(IB,IIB) (IA,IIA)
2 4
Payoff to Rose
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Game theory assumptions Colin

We assume each player adopts a LIA LB

randomized mixed strategy: TA| (2,0) (3,6)
Rose

e Rose plays A with probability p IB| (4,2) (0,0)

and IB with probability 1 — p.

e Colin plays ITA with probability
g and IIB with probability 1 — ¢

The expected payoff is then
pq(2,0) +p(1 — ¢)(3,6) + (1 — p)a(4,2) + (1 — p)(1 — ¢)(0,0)

or

pla(2,0) + (1 —¢)(3,6)] + (1 — p) [q(4,2) + (1 — ¢)(0,0)]

T g0+ (1= p)(&,2)] + (1 — ) [p(3,6) + (1 — p)(0,0)]
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Possible expected payoffs

Each value of ¢ determines one point
on the line from (2,0) to (3,6) and
one point on the line from (4, 2) to
(0,0).

Then p is the parameter for a line
segment between these points.

P1a(2,0) + (1 —¢)(3,06)]
+(1 o p) [Q<47 2) + (1 o Q)(Ov O)]

W

Payoff to Colin

[\]

(IA,IIB)

(IB,IIA)

(IB,1IB)

(IALITA)
Payoff to Rose

4
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Possible expected payoffs

Alternatively, each value of p
determines one point on the line from
(2,0) to (4,2) and one point on the
line from (3,6) to (0,0).

Then ¢ is the parameter for a line
segment between these points.

q[p(2,0) + (1 = p)(4,2)]
+(1 = q)[p(3,6) + (1 = p)(0,0)]

(IA,IIB)

6 o

g 4]

3

@)

IS

&=

2

S (IB,IIA)
(IB,1IB) (IAIIA) 4

Payoff to Rose
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Possible expected payoffs . (IAIIB)

Either way, the expected payoft is
contained in a region bounded by
four lines and a parabolic envelope

W

curve.

If the game is played a large number of

Payoff to Colin

times and the average payoff converges (IB,IIA)

[\]

to a point outside this region, then the
players’ randomizing devices are not
independent.

(IB,1IB) (IAIIA) 4
Payoff to Rose

This could be due to collusion, espionage, or maybe just poor
random-number generators.
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(Generalization: spacing functions

Draw line segments ¢, connecting
(X(a),0) with (0,Y/(a))

for arbitrary differentiable functions
X and Y.

These are “spacing functions”.

(X(a),0) (X(5),0)
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(Generalization: spacing functions

Draw line segments £, connecting
(X(a),0) with (0,Y(a))  ©Y()

for arbitrary differentiable functions
X and Y.

These are “spacing functions”.

Exercise: (X(a),0) (X(5),0)
Segments £, and £ intersect at the point

(X(Q)X(ﬂ)(Y(ﬂ) — V(o)) Y(o)Y(5)(X(a) - X(ﬁ)))
X(a)Y(B) =Y(a)X(8) " X(a)Y(8) = V() X(B)
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(Generalization: spacing functions

(0,Y ()9
To find a point on the envelope
curve, we need to compute the limit
of this intersection point as 5 — «a.

That is, we need to find .
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Some calculus

“Plugging in” « for 3 gives

(X(@)X(Oé)(Y(Oé) — Y()) Y(a)Y(e)(X(a) -
X(a)Y (o) =Y(a)X(a) " X(a)Y(a) =Y (a)




Some calculus

“Plugging in” « for 3 gives

(X(@)X(Oé)(Y(OO — Y(a)) Y(a)Y(o)(X(a) - X
X()Y(a) = Y(@)X(a) X(@)Y(a)—Y(a)X

So we try something else . . .

lim

X(@)X(B)(Y(5) - V()
B—a X(&)Y(ﬁ) —

V() X(5)
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Some calculus X(a)X(B)(Y(B) —Y(a)

We get 5113% X(a)Y(B) = Y(a)X ()

. X(a)X(8)(Y(B) = Y(a))
F-a X ()Y (8)—X(a)Y (o) + X ()Y (a) — Y ()X (B)
(

o X(a)X(B)(Y(8) - Y(a)
0 X(@)(Y(8) - Y(a) - Y(a)(X(8) - X(a))

X (o) X (8)( T

= YY) T
f—a X(Oé)(ﬁ_—a) — Y (a)( - )
_ X(a)X(a) - ﬁlg%
X(a) - Jm X _y(q) . Jim XO X
(X())*Y'()

T X(a)Y'(@) - Y(a)X'(a)
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Some calculus

Doing the same thing for the y-coordinate, we get

S @YX - X(B) __ ~(Y(0)*X'(a)
o X(@Y(8) - Y(@X(8)  X(@)Ya) - Y(a)X'(a)

We get the parametrization

( (X (a))?Y'(a) — (Y ()’ X"(ev) )
X(a)Y'(a) = Y(a)X'(a) X(a)Y'(a) = Y(a)X'(«)

for the envelope curve.
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Example

A ladder of length L slides down a
wall. What is the envelope curve?
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Example

A ladder of length L slides down a
wall. What is the envelope curve?

Solution: We want
(X () + (YV())* = L%,
so we may as well take

X(a) = Lsin(a),
Y () = Lcos(a).

Y ()4
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Example

A ladder of length L slides down a
wall. What is the envelope curve?

Solution: We want
(X () + (YV())* = L%,
so we may as well take

X(a) = Lsin(a),
Y () = Lcos(a).
We get

V()9

( (X (a))*Y'()

—(Y(a))*X"(a) )

X(a)Y'(a) = Y(a)X'(a) X(a)Y'(a) =Y (a)X'(«)

= (Lsin*(a), Lcos®(a))
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Remarks

The envelope curve, parametrized by
v = Lsin®(a) and y = Lcos’(a)
has equation
By — 1}

(This is called an astroid.)
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Remarks

The envelope curve, parametrized by
r = Lsin’(a) and y = Lcos’(a)
has equation
I

(This is called an astroid.)

RN
LS.,

So if you want to carry your ladder around a corner from a hallway of
width x into a hallway of width y, the length of the ladder has to satisfy

L3 < 25 4y
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Another generalization

Instead of placing the nails along lines,
use parametrized curves

(Xi(@), V1)) and (Xa(a), Ya(a))

Exercise: Find the intersection
point of ¢, and £, and show that as
B — «, this point approaches

(XX - XX (Y — V) — (XGYE - YXG)(Xs — XG)

(X5 — X7)(Ya = V) — (V5 = V])(Xa — Xy)
(Y1.X) — X1¥5) (Yo — V1) — (V1Y5 — V/'V5) (X — X))
N (X5 — XD (Yo — Y1) — (V5 = Y])(X2 — X))
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