
String Art and Calculus

(and Games with Envelopes)

Gregory Quenell
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1First example

Draw line segments connecting

(0, x) with (1− x, 0)

for x = 0.1, 0.2, . . . , 0.9.
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1First example

Draw line segments connecting

(0, x) with (1− x, 0)

for x = 0.1, 0.2, . . . , 0.9.

This gives a pleasing arrangement of

lines and . . .

. . . an interesting curve to study.
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1First example

Draw line segments connecting

(0, x) with (1− x, 0)

for x = 0.1, 0.2, . . . , 0.9.

This gives a pleasing arrangement of

lines and . . .

. . . an interesting curve to study.

What curve is it?
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ℓβ -

(0, α)

(0, β)

(1− β, 0) (1− α, 0)

Finding the envelope

For each α ∈ [0, 1], let ℓα be the line

segment connecting

(0, α) with (1− α, 0).
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ℓβ -

(0, α)

(0, β)

(1− β, 0) (1− α, 0)

Finding the envelope

For each α ∈ [0, 1], let ℓα be the line

segment connecting

(0, α) with (1− α, 0).

If α and β are close together, then the

intersection point of ℓα and ℓβ is close

to a point on the curve.
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ℓα
�	

ℓβ -

(0, α)

(0, β)

(1− β, 0) (1− α, 0)

Finding the envelope

For each α ∈ [0, 1], let ℓα be the line

segment connecting

(0, α) with (1− α, 0).

If α and β are close together, then the

intersection point of ℓα and ℓβ is close

to a point on the curve.

Exercise: For α ̸= β, the segments ℓα and ℓβ intersect at the point

(αβ, (1− α)(1− β)).
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ℓα
�	

ℓβ -

Finding the envelope

As β → α, the point

(αβ, (1− α)(1− β))

approaches a point on the curve.

Thus, each point on the curve has the

form

lim
β→α

(αβ, (1− α)(1− β))

for some α.

9



ℓα
�	

ℓβ -

Finding the envelope

As β → α, the point

(αβ, (1− α)(1− β))

approaches a point on the curve.

Thus, each point on the curve has the

form

lim
β→α

(αβ, (1− α)(1− β))

for some α.

This is an easy limit, and we get the parametrization

(α2, (1− α)2), 0 ≤ α ≤ 1

for our envelope curve.
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1Finding the envelope

The coordinates

x = α2 and y = (1− α)2

satisfy √
x +

√
y = 1

so our curve is one branch of a

hypocircle with exponent 1
2.
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1Finding the envelope

The coordinates

x = α2 and y = (1− α)2

satisfy √
x +

√
y = 1

so our curve is one branch of a

hypocircle with exponent 1
2.

Stewart 4/e, p. 191, problem 38 says

“Show that the sum of the x- and y-intercepts of any tangent

line to the curve
√
x +

√
y =

√
c is equal to c.”
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1

2

Parabolas

The coordinates

x = α2 and y = (1− α)2

also satisfy

2(x + y) = (x− y)2 + 1

Our envelope curve is part of a

parabola, tangent to the coordinate

axes at (1, 0) and (0, 1).
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1 2

1

2

Parabolas

The coordinates

x = α2 and y = (1− α)2

also satisfy

2(x + y) = (x− y)2 + 1

Our envelope curve is part of a

parabola, tangent to the coordinate

axes at (1, 0) and (0, 1).

In the classical theory of conic sections, our envelope has

focus
(
1
2,

1
2

)
and directrix x + y = 0.
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An easy generalization

Pick equally-spaced points along (almost) any two lines, and do the same

thing. You get an image of our parabola under a linear transformation.
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An easy generalization

Pick equally-spaced points along (almost) any two lines, and do the same

thing. You get an image of our parabola under a linear transformation.

It’s another parabola.
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Application: String art

Drive nails at equal intervals

along two lines, and connect

the nails with decorative

string.
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along two lines, and connect

the nails with decorative
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You get a pleasing pattern of

intersecting lines (mostly),

and . . .
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Application: String art

Drive nails at equal intervals

along two lines, and connect

the nails with decorative

string.

You get a pleasing pattern of

intersecting lines (mostly),

and . . .

. . . envelope curves that lie on parabolas tangent to the nailing lines.
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Colin

IIA IIB

IA (2, 0) (3, 6)
Rose

IB (4, 2) (0, 0)

Application: game theory

Consider a two-person, non-zero-sum

game in which each player has two

strategies.

P
ay
off

to
C
ol
in

Payoff to Rose

(IB,IIB) (IA,IIA)

(IB,IIA)

(IA,IIB)

2

4

6

2 4

Such a game has four possible payoffs.

We list them in a payoff matrix.

We can show the payoffs to Rose and

Colin as points in the payoff plane.
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Colin

IIA IIB

IA (2, 0) (3, 6)
Rose

IB (4, 2) (0, 0)

Game theory assumptions

We assume each player adopts a

randomized mixed strategy:

• Rose plays IA with probability p

and IB with probability 1− p.

• Colin plays IIA with probability

q and IIB with probability 1− q

The expected payoff is then

pq(2, 0) + p(1− q)(3, 6) + (1− p)q(4, 2) + (1− p)(1− q)(0, 0)

or
p [q(2, 0) + (1− q)(3, 6)] + (1− p) [q(4, 2) + (1− q)(0, 0)]

or
q [p(2, 0) + (1− p)(4, 2)] + (1− q) [p(3, 6) + (1− p)(0, 0)]
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P
ay
off

to
C
ol
in

Payoff to Rose

(IB,IIB) (IA,IIA)

(IB,IIA)

(IA,IIB)

2

4

6

4

Possible expected payoffs

Each value of q determines one point

on the line from (2, 0) to (3, 6) and

one point on the line from (4, 2) to

(0, 0).

Then p is the parameter for a line

segment between these points.

p [q(2, 0) + (1− q)(3, 6)]

+(1− p) [q(4, 2) + (1− q)(0, 0)]
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P
ay
off

to
C
ol
in

Payoff to Rose

(IB,IIB) (IA,IIA)

(IB,IIA)

(IA,IIB)

2

4

6

4

Possible expected payoffs

Alternatively, each value of p

determines one point on the line from

(2, 0) to (4, 2) and one point on the

line from (3, 6) to (0, 0).

Then q is the parameter for a line

segment between these points.

q [p(2, 0) + (1− p)(4, 2)]

+(1− q) [p(3, 6) + (1− p)(0, 0)]
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P
ay
off

to
C
ol
in

Payoff to Rose

(IB,IIB) (IA,IIA)

(IB,IIA)

(IA,IIB)

2

4

6

4

Possible expected payoffs

Either way, the expected payoff is

contained in a region bounded by

four lines and a parabolic envelope

curve.

If the game is played a large number of

times and the average payoff converges

to a point outside this region, then the

players’ randomizing devices are not

independent.

This could be due to collusion, espionage, or maybe just poor

random-number generators.
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(0, Y (α))

(0, Y (β))

(X(α), 0) (X(β), 0)

Generalization: spacing functions

Draw line segments ℓα connecting

(X(α), 0) with (0, Y (α))

for arbitrary differentiable functions

X and Y .

These are “spacing functions”.
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(0, Y (α))

(0, Y (β))

(X(α), 0) (X(β), 0)

Generalization: spacing functions

Draw line segments ℓα connecting

(X(α), 0) with (0, Y (α))

for arbitrary differentiable functions

X and Y .

These are “spacing functions”.

Exercise:

Segments ℓα and ℓβ intersect at the point(
X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)− Y (α)X(β)
,
Y (α)Y (β)(X(α)−X(β))

X(α)Y (β)− Y (α)X(β)

)
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(0, Y (α))

(X(α), 0)

Generalization: spacing functions

To find a point on the envelope

curve, we need to compute the limit

of this intersection point as β → α.

That is, we need to find

lim
β→α

(
X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)− Y (α)X(β)
,
Y (α)Y (β)(X(α)−X(β))

X(α)Y (β)− Y (α)X(β)

)
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Some calculus

“Plugging in” α for β gives

(
X(α)X(α)(Y (α)− Y (α))

X(α)Y (α)− Y (α)X(α)
,
Y (α)Y (α)(X(α)−X(α))

X(α)Y (α)− Y (α)X(α)

)

=

(
0

0
,
0

0

)
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Some calculus

“Plugging in” α for β gives

(
X(α)X(α)(Y (α)− Y (α))

X(α)Y (α)− Y (α)X(α)
,
Y (α)Y (α)(X(α)−X(α))

X(α)Y (α)− Y (α)X(α)

)

=

(
0

0
,
0

0

)

So we try something else . . .

lim
β→α

(
X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)− Y (α)X(β)
,
Y (α)Y (β)(X(α)−X(β))

X(α)Y (β)− Y (α)X(β)

)
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Some calculus
We get lim

β→α

X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)− Y (α)X(β)

= lim
β→α

X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)−X(α)Y (α) +X(α)Y (α)− Y (α)X(β)

= lim
β→α

X(α)X(β)(Y (β)− Y (α))

X(α)(Y (β)− Y (α))− Y (α)(X(β)−X(α))

= lim
β→α

X(α)X(β)( Y (β)−Y (α)
β−α )

X(α)( Y (β)−Y (α)
β−α )− Y (α)(X(β)−X(α)

β−α )

=
X(α)X(α) · lim

β→α

Y (β)−Y (α)
β−α

X(α) · lim
β→α

Y (β)−Y (α)
β−α − Y (α) · lim

β→α

X(β)−X(α)
β−α

=
(X(α))2Y ′(α)

X(α)Y ′(α)− Y (α)X ′(α)
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Some calculus

Doing the same thing for the y-coordinate, we get

lim
β→α

Y (α)Y (β)(X(α)−X(β))

X(α)Y (β)− Y (α)X(β)
=

−(Y (α))2X ′(α)

X(α)Y ′(α)− Y (α)X ′(α)

We get the parametrization

(
(X(α))2Y ′(α)

X(α)Y ′(α)− Y (α)X ′(α)
,

−(Y (α))2X ′(α)

X(α)Y ′(α)− Y (α)X ′(α)

)
for the envelope curve.
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Example

A ladder of length L slides down a

wall. What is the envelope curve?
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Y (α)

 ︸ ︷︷ ︸
X(α)

Example

A ladder of length L slides down a

wall. What is the envelope curve?

Solution: We want

(X(α))2 + (Y (α))2 = L2,

so we may as well take

X(α) = L sin(α),

Y (α) = L cos(α).
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Y (α)

 ︸ ︷︷ ︸
X(α)

Example

A ladder of length L slides down a

wall. What is the envelope curve?

Solution: We want

(X(α))2 + (Y (α))2 = L2,

so we may as well take

X(α) = L sin(α),

Y (α) = L cos(α).
We get (

(X(α))2Y ′(α)

X(α)Y ′(α)− Y (α)X ′(α)
,

−(Y (α))2X ′(α)

X(α)Y ′(α)− Y (α)X ′(α)

)
= (L sin3(α), L cos3(α))
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Y (α)

 ︸ ︷︷ ︸
X(α)

Remarks

The envelope curve, parametrized by

x = L sin3(α) and y = L cos3(α)

has equation

x
2
3 + y

2
3 = L

2
3

(This is called an astroid.)
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6

?

x

y

Remarks

The envelope curve, parametrized by

x = L sin3(α) and y = L cos3(α)

has equation

x
2
3 + y

2
3 = L

2
3

(This is called an astroid.)

So if you want to carry your ladder around a corner from a hallway of

width x into a hallway of width y, the length of the ladder has to satisfy

L
2
3 ≤ x

2
3 + y

2
3
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Another generalization

Instead of placing the nails along lines,

use parametrized curves

(X1(α), Y1(α)) and (X2(α), Y2(α))

Exercise: Find the intersection

point of ℓα and ℓβ, and show that as

β → α, this point approaches

x =
(X1X

′
2 −X ′

1X2)(Y2 − Y1)− (X1Y
′
2 − Y ′

1X2)(X2 −X1)

(X ′
2 −X ′

1)(Y2 − Y1)− (Y ′
2 − Y ′

1)(X2 −X1)

y =
(Y1X

′
2 −X ′

1Y2)(Y2 − Y1)− (Y1Y
′
2 − Y ′

1Y2)(X2 −X1)

(X ′
2 −X ′

1)(Y2 − Y1)− (Y ′
2 − Y ′

1)(X2 −X1)
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