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CONTINUED FRACTIONS

A positive number x can be written in the form

1
r = ap-+ 1
a1 + i
ap + ————
as + .
where ag is a non-negative integer and
ay. 1s a positive integer for k& > 1.

Notation: We write |ag; a1, a9,as,...] for the continued fraction

above.

We write [ag; a1, as,as, .. .,a,] for a continued fraction

that terminates.




CONTINUED FRACTIONS

Example: Write xy = 99% as a continued fraction.

11 Let ag = | o] and write
2 Top = ap +7To
= 99+ — 1 |
(25/11) If ro # 0, let z; o and write
1
o = Qg+ —

X1




CONTINUED FRACTIONS

Example: Write xy = 99% as a continued fraction.

11
Xog — 99—|— %
= 99
i (25/11) Let a; = |x1] and write
r1T = a;+1r
= 99+ 3 with 0 < r; < 1.
2+ 1_1 Ifri #£0, let 9 = i, and rewrite z; as
1
1
1 ap + —
= 99 + - 7
2+




CONTINUED FRACTIONS

Example: Write xy = 994;

1
rog — 99 + 1
2
)

= 09 !
— +—1

44 os a continued fraction.

Let as = |x2] and write

Ty = Q2+ Ty
with 0 < ry < 1.

1
If ro # 0, let x3 = —, and rewrite z5 as
T2

1

a2+—
X3




CONTINUED FRACTIONS

44

Example: Write xy = 994;

rog — 99 4

1
2+

1
3+ =

(3/2)

— 99+

24

1+ =

3+ ——

as a continued fraction.

Let ag = |x3] and write
I3 = a3-+713

with 0 < r3 < 1.

If r3 # 0, let x4 = —, and rewrite z3 as
T3

1
a3+—
X4




CONTINUED FRACTIONS

44

To5 84S & continued fraction.

Example: Write 2y = 99

00+ 1 Let ay = |x4] and write
rog —
91 1 : Ty = Q4 +T4
3—|——1 with 0 < ry < 1.
1+ 5 This time, r4 = 0, so stop.
1
= 99 + 1
2+ I
o =F 1
_|_ -
2+0

= [99:2,3,1,2]




CONTINUED FRACTIONS — Useful Facts

e The algorithm terminates — you get r, = 0 for some k — if and only if z
is rational.

The number x = [1;4,1,4,2] is The number x = [3;3,3,3,3,.. ]
rational is irrational
" . 3++V13
. it’s equal to 03 ... it’s equal to +T

e The CFE of a number z is eventually periodic if and only if z is a quadratic
surd.

VT7=12:1,1,1,4,1,1,1,4,1,1,1,4,.. ]
e=1[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,.. ]




CONTINUED FRACTIONS — Useful Facts

e Every irrational positive  has a unique continued fraction expansion.
Every rational positive x has two continued fractions expansions.

1 1
2;3,3,1] =2+ i :2+—1:[2;3,4]
1
If we insist that |[ag;aq,a0,...,ar,1] always be written

lag; a1, as, . .., ar + 1], then every positive x has a unique CFE.




CONTINUED FRACTIONS — Evaluation

e To evaluate a terminating continued fraction, just unwind it from the
end:

1 1 4 30
2:3,4] +'3 =" "B B
5=

e For a non-terminating continued fraction, this doesn’t work so well:

3:7,15,1,292,1,1,1,2,1,3,1,14,2, .. ]

— 34+ L
N 7+ 1

Where do you start?
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CONTINUED FRACTIONS — Evaluation

Answer: Use Continued Fraction Convergents.

The value of [3;7,15,1,292,1,1,1,2,1,3,1,14,2.. ]
is the limit of the sequence

3, [3:;7, [3;7,15], [3;7,15,1], [3;7,15,1,292],

That is
1 1 1 1
3, 3+, 3+-0—7, 3t+t-0—7, 3t -0—7—
7 7+1—5 7+m 7—|—W
* 293
Lol l l !
22 333 355 103993

7 106 113 33102
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CONTINUED FRACTIONS — Evaluation

Comments:

e The relatively large coefficient 292 means that the difference between

1 1
1 and 3+

3+

7+ 7+

15 4 2 15 !
1 +1+ !
292

is relatively small.

Tacking on a large coefficient gives a small change in the value of the
continued fraction.
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CONTINUED FRACTIONS — Evaluation

Comments:

e The continued fraction convergents alternately under- and overestimate
the limiting value.

[3;
[3;7,15

[3: 7,15,
[3:7,15,1,292
3:7,15,1,292, 1

]

]
1]
|
]

QN

3

3.1428571429
3.1415094340
3.1415929204
3.1415926530
3.1415926539
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VISUALIZING CONTINUED FRACTIONS

~
X

Given a positive x, draw an x-by-1 rectangle.
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VISUALIZING CONTINUED FRACTIONS

~
X

Starting at the left end, put in as many “horizontal squares” as will fit.

Call this number ay.
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VISUALIZING CONTINUED FRACTIONS

~
X

In the remaining space, put as many “vertical squares” as will fit.

Call this number a;.
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VISUALIZING CONTINUED FRACTIONS

~
X

In the remaining space, put as many horizontal squares as will fit.

Call this number as.
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VISUALIZING CONTINUED FRACTIONS

~
X

In the remaining space, put as many vertical squares as will fit.

Call this number as.
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VISUALIZING CONTINUED FRACTIONS

~
X

Then the “square-packing” sequence we get for x is {ag, a1, as, as, . .

In this example, the sequence terminates, and we write {2, 3,4,2}.

3

19




VISUALIZING CONTINUED FRACTIONS

Comment:

This “square-packing” algorithm gives a map

S ¢ R" — sequences of integers

and it’s no surprise that Syquare(2) is the continued-fraction expansion of x.
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VISUALIZING CONTINUED FRACTIONS

Zo

> —

L
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VISUALIZING CONTINUED FRACTIONS

Zo

>
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VISUALIZING CONTINUED FRACTIONS

In a square packing for an irrational number, the
horizontal and vertical squares never quite fill up
the space.
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VISUALIZING CONTINUED FRACTIONS

In a square packing for an irrational number, the
horizontal and vertical squares never quite fill up
the space.
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CIRCLE PACKINGS

A configuration of circles is an
arrangement of circles in which no
two circles have overlapping interi-
ors.

A circle packing of a bounded re-
gion on the plane or a compact sur-
face is a configuration in which all
the interstices are curvilinear trian-
gles.

25




CIRCLE PACKINGS

A circle packing is special because it is rigid:

the packing’s geometry is determined by its combinatorics.

This configuration is not rigid. There is a quadrilateral in the middle,
and the circles can shift without changing their tangencies.
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CIRCLE PACKINGS

A circle packing is special because it is rigid:

the packing’s geometry is determined by its combinatorics.

This configuration is not rigid. There is a quadrilateral in the middle,
and the circles can shift without changing their tangencies.

The quadrilateral shows up clearly in the tangency graph.
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CIRCLE PACKINGS

A circle packing is special because it is rigid:

the packing’s geometry is determined by its combinatorics.

These are circle packings, and they are rigid. All the interstices are
curvilinear triangles.
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CIRCLE PACKINGS

A circle packing is special because it is rigid:

the packing’s geometry is determined by its combinatorics.

These are circle packings, and they are rigid. All the interstices are
curvilinear triangles.

The tangency graph of a packing is always a triangulation.
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THE BROOKS PARAMETER

(0,0) (x,0)

Given a positive x, form a curvilinear quadrilateral using reference circles with
diameter 1 centered at (0,1/2) and (z,1/2).
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THE BROOKS PARAMETER {2,...}

(0,0) (x,0)
Given a positive x, form a curvilinear quadrilateral using reference circles with
diameter 1 centered at (0,1/2) and (z,1/2).

Starting at the left end, put in as many “horizontal circles” as you can. A
horizontal circle is tangent to the top, bottom, and left sides of its enclosing
quadrilateral.

Call this number by.
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THE BROOKS PARAMETER {2,3,...}

(0,0) (x,0)

Now start at the top of the remaining unfilled quadrilateral, and put in as
many “vertical circles” as you can. A vertical circle is tangent to the top, left,
and right sides of its enclosing quadrilateral.

Call this number b;.
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THE BROOKS PARAMETER {2,3,4,...}

(0,0) (x,0)

Now put as many horizontal circles as you can into the remaining unfilled
quadrilateral, starting at the left end.

Call this number b,.
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THE BROOKS PARAMETER {2,3,4,1,...}

(0,0) (x,0)

Now start at the top of the remaining unfilled quadrilateral, and put in as
many vertical circles as you can.

Call this number bs.
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THE BROOKS PARAMETER {2,3,4,1,3,1,2,1,3,1,5,1, ..

(0,0) (x,0)

Continue alternately adding horizontal and vertical circles until either

e the last circle in a row or column is tangent on all four sides, or

e you run out of time or patience.

3
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THE BROOKS PARAMETER

(0,0) (x,0)

This algorithm gives us a map Sgele @ [1,00) — sequences of integers.

Note that Seirele() is a finite sequence only if the last circle in a row or column
is tangent to all four sides of its enclosing quadrilateral.

In this case, we have constructed a packing of the original quadrilateral.




THE BROOKS PARAMETER

(0,0)

Or the process may just go on forever.
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THE BROOKS PARAMETER {2,3,4,1,3,1,2,1,3,1,5,1,...

(0,0) (x,0)

Define the Brooks parameter Teirele © |1,00) — R

by reading Seirele() as a continued fraction.

For the x in the picture (approximately 3.22), we have

renate(2) ~ [2:3,4,1,3,1,2,1,3,1,5,1,.. ] ~ 2.312

38




THE BROOKS PARAMETER

Observations:

o We have 7urce(2) = 1, Teircle(3) = 2, and in general, 7eee(n + 1) = n if
n 1S an integer.

e The function reae(x) — o is 1-periodic.

o If ruce() is rational, then the original z-by-1 curvilinear quadrilateral
is packable.
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THE BROOKS PARAMETER

Questions:

o Is repae() differentiable?
o Is repee() continuous?

o IS repele () increasing? How closely does it mimic the analogous function
for square packing (namely, 7square() = )7

o Is repele() useful?
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THE BROOKS PARAMETER

The function 7epee(s) is com-
putable (in theory, at least);
here’s a graph.
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'8
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CONTINUITY
Why is 7square(+) continuous?

1 1
quuare($0) = ap+ 1 quuare(xo + 5) =ap+

a1+— CL1—|— 1
a2

as +
2 a3+...

When we slide from a rational number x( to xg + 9, we introduce some new
coefficients (starting here with as). By taking § sufficiently small, we can

make a3 as large as we want, so that the new term P can be made
a3 o o o
arbitrarily small.
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CONTINUITY

quuare(CUO) = ap + ap + 1

e (0 +8) = g+ S

If § is small enough, then when we slide from an irrational xg to o+ ¢, then
the first few coefficients in the CFE do not change.

By choosing ¢ sufficiently small, we can push the first change in coefficients
as far out as we like, and thus make the change in rgqare(x) arbitrarily small.
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CONTINUITY
The function reyee(+) is continuous for the same reasons.

1
Tcircle<2 + 5) = 14 —
by

When we introduce a new row or column of circles, we can choose 9 so as to
make the number of new circles as large as we like.
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CONTINUITY
The function reyee(+) is continuous for the same reasons.

'rcircle(xO + 5) = 1+ 1

And if we start at an irrational x,, we may make 0 small enough so that it
does not disturb by, by, bo, ..., b, for whatever n we choose.
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DIFFERENTIABILITY
Why is 7square(+) differentiable at 17

T'square ( 1) = 1|

Tsquare(1 +€) =~ 1+ =1+¢

1
(1/¢)

The new column contains approximately 1/ squares, S0 T'square(1+€) = 14¢,
and

. (14+e)—-1
7alsquame(l) = ll_r% f =

1
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DIFFERENTIABILITY

What is 7’ ¢irete(1)7

1

1
Exercise: Show that y, = = + for k=1,2,3,....

2 2k +1)

Corollary: The diameter of the k™ circle from the top is

1

2(k2 + k)
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DIFFERENTIABILITY

Reasoning very roughly, it

takes on the order of —— cir-
v 2€

cles to get down to a diameter
of €.

The new column of circles with diameter € at the middle therefore contains

2
on the order of —— circles. We get 7eiee(1 +€) &= 0 + , 80 that

1
Ve /)
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DIFFERENTIABILITY 2l

One uses a linear fractional trans-
formation to move any row or col- 1.8}
umn of “new” circles into this po-
sition and thus proves the

1.6/
Theorem (Brooks, 1990): The
derivative of 7.pee 18 Infinite at Ll
any z such that reee(r) is ratio-
nal.

1.2+

2.2 2.4 2.6 2.8 3
SO Teirele 18 an example of a function that is continuous on [1, 00) but is non-
differentiable at a dense set of points.
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APPLICATIONS

Given a region bounded by circular arcs, you can add circles until the regions
that remain are all triangles or quadrilaterals.
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APPLICATIONS

Given a region bounded by circular arcs, you can add circles until the regions
that remain are all triangles or quadrilaterals.
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APPLICATIONS

Given a region bounded by circular arcs, you can add circles until the regions
that remain are all triangles or quadrilaterals.
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APPLICATIONS

Given a region bounded by circular arcs, you can add circles until the regions
that remain are all triangles or quadrilaterals.
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APPLICATIONS

Given a region bounded by circular arcs, you can add circles until the regions
that remain are all triangles or quadrilaterals.
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APPLICATIONS

This can be completed to give a packing
if we can find a packing of each of the
quadrilaterals.

Sometimes a quadrilateral isn’t packable.
In that case, its Brooks parameter is ir-
rational. By the continuity of rgce, you
can make the Brooks parameter rational

by making an arbitrarily small change to
the quadrilateral.

S0,

Theorem family: Even if you're given a non-packable region, there’s always
a packable one right nearby.
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