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Continued Fractions

A positive number x can be written in the form

x = a0 +
1

a1 + 1

a2 +
1

a3 + . . .

where a0 is a non-negative integer and

ak is a positive integer for k ≥ 1.

Notation: We write [a0; a1, a2, a3, . . .] for the continued fraction

above.

We write [a0; a1, a2, a3, . . . , an] for a continued fraction

that terminates.
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Continued Fractions

Example: Write x0 = 99 44
100 as a continued fraction.

x0 = 99 +
11

25

= 99 +
1

(25/11)

Let a0 = bx0c and write

x0 = a0 + r0

with 0 ≤ r0 < 1.

If r0 6= 0, let x1 =
1

r0
, and write

x0 = a0 +
1

x1
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Continued Fractions

Example: Write x0 = 99 44
100 as a continued fraction.

x0 = 99 +
11

25

= 99 +
1

(25/11)

= 99 +
1

2 +
3

11

= 99 +
1

2 +
1

(11/3)

Let a1 = bx1c and write

x1 = a1 + r1

with 0 ≤ r1 < 1.

If r1 6= 0, let x2 =
1

r1
, and rewrite x1 as

a1 +
1

x2
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Continued Fractions

Example: Write x0 = 99 44
100 as a continued fraction.

x0 = 99 +
1

2 +
1

(11/3)

= 99 +
1

2 +
1

3 +
2

3

= 99 +
1

2 +
1

3 +
1

(3/2)

Let a2 = bx2c and write

x2 = a2 + r2

with 0 ≤ r2 < 1.

If r2 6= 0, let x3 =
1

r2
, and rewrite x2 as

a2 +
1

x3

5



Continued Fractions

Example: Write x0 = 99 44
100 as a continued fraction.

x0 = 99 +
1

2 +
1

3 +
1

(3/2)

= 99 +
1

2 +
1

3 +
1

1 +
1

2

Let a3 = bx3c and write

x3 = a3 + r3

with 0 ≤ r3 < 1.

If r3 6= 0, let x4 =
1

r3
, and rewrite x3 as

a3 +
1

x4
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Continued Fractions

Example: Write x0 = 99 44
100 as a continued fraction.

x0 = 99 +
1

2 +
1

3 +
1

1 +
1

2

= 99 +
1

2 +
1

3 +
1

1 +
1

2+0
= [99; 2, 3, 1, 2]

Let a4 = bx4c and write

x4 = a4 + r4

with 0 ≤ r4 < 1.

This time, r4 = 0, so stop.
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Continued Fractions – Useful Facts

• The algorithm terminates – you get rk = 0 for some k – if and only if x0

is rational.

The number x = [1; 4, 1, 4, 2] is

rational

. . . it’s equal to
64

53

The number x = [3; 3, 3, 3, 3, . . .]

is irrational

. . . it’s equal to
3 +

√
13

2

• The CFE of a number x is eventually periodic if and only if x is a quadratic

surd.

√
7 = [2; 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, . . .]

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .]
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Continued Fractions – Useful Facts

• Every irrational positive x has a unique continued fraction expansion.

Every rational positive x has two continued fractions expansions.

[2; 3, 3, 1] = 2 +
1

3 +
1

3 +
1

1

= 2 +
1

3 +
1

4

= [2; 3, 4]

If we insist that [a0; a1, a2, . . . , ak, 1] always be written as

[a0; a1, a2, . . . , ak + 1], then every positive x has a unique CFE.
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Continued Fractions – Evaluation

• To evaluate a terminating continued fraction, just unwind it from the

end:

[2; 3, 4] = 2 +
1

3 +
1

4

= 2 +
1

(13/4)
= 2 +

4

13
=

30

13

• For a non-terminating continued fraction, this doesn’t work so well:

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, . . .]

= 3 +
1

7 + 1
15+ 1

1+ 1
292+ 1

1+···

Where do you start?
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Continued Fractions – Evaluation

Answer: Use Continued Fraction Convergents.

The value of [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2 . . .]
is the limit of the sequence

3, [3; 7], [3; 7, 15], [3; 7, 15, 1], [3; 7, 15, 1, 292], . . .

That is

3, 3 +
1

7
, 3 +

1

7 + 1
15

, 3 +
1

7 + 1
15+ 1

1

, 3 +
1

7 + 1
15+ 1

1+ 1
293

↓ ↓ ↓ ↓ ↓
3

22

7

333

106

355

113

103993

33102
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Continued Fractions – Evaluation

Comments:

• The relatively large coefficient 292 means that the difference between

3 +
1

7 +
1

15 +
1

1

and 3 +
1

7 +
1

15 +
1

1 +
1

292

is relatively small.

Tacking on a large coefficient gives a small change in the value of the

continued fraction.
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Continued Fractions – Evaluation

Comments:

• The continued fraction convergents alternately under- and overestimate

the limiting value.

3 = 3
[3; 7] ≈ 3.1428571429

[3; 7, 15] ≈ 3.1415094340
[3; 7, 15, 1] ≈ 3.1415929204

[3; 7, 15, 1, 292] ≈ 3.1415926530
[3; 7, 15, 1, 292, 1] ≈ 3.1415926539
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Visualizing Continued Fractions

︸ ︷︷ ︸
x

1





Given a positive x, draw an x-by-1 rectangle.
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Visualizing Continued Fractions

︸ ︷︷ ︸
x

1





Starting at the left end, put in as many “horizontal squares” as will fit.

Call this number a0.
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Visualizing Continued Fractions

︸ ︷︷ ︸
x

1





In the remaining space, put as many “vertical squares” as will fit.

Call this number a1.
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Visualizing Continued Fractions

︸ ︷︷ ︸
x

1





In the remaining space, put as many horizontal squares as will fit.

Call this number a2.
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Visualizing Continued Fractions

︸ ︷︷ ︸
x

1





In the remaining space, put as many vertical squares as will fit.

Call this number a3.
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Visualizing Continued Fractions

︸ ︷︷ ︸
x

1





Then the “square-packing” sequence we get for x is {a0, a1, a2, a3, . . .}
In this example, the sequence terminates, and we write {2, 3, 4, 2}.
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Visualizing Continued Fractions

Comment:

This “square-packing” algorithm gives a map

Ssquare : R+ → sequences of integers

and it’s no surprise that Ssquare(x) is the continued-fraction expansion of x.
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Visualizing Continued Fractions

x0︷ ︸︸ ︷ 



1

︸ ︷︷ ︸
a0

︸ ︷︷ ︸
r0

1︷ ︸︸ ︷ }
r0

%
6
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Visualizing Continued Fractions

?

½
½

½
½

½
½

½
½

½=

x0︷ ︸︸ ︷ 



1

︸ ︷︷ ︸
a0

︸ ︷︷ ︸
r0

1︷ ︸︸ ︷ }
r0

1

r0
= x1

︷ ︸︸ ︷ 



1

︸ ︷︷ ︸
a1

︸︷︷︸
r1
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Visualizing Continued Fractions

In a square packing for an irrational number, the

horizontal and vertical squares never quite fill up

the space.
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Visualizing Continued Fractions

e
³³³³³³

aaaaa
In a square packing for an irrational number, the

horizontal and vertical squares never quite fill up

the space.

24



Circle Packings

A configuration of circles is an

arrangement of circles in which no

two circles have overlapping interi-

ors.

A circle packing of a bounded re-

gion on the plane or a compact sur-

face is a configuration in which all

the interstices are curvilinear trian-

gles.
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Circle Packings

A circle packing is special because it is rigid:

the packing’s geometry is determined by its combinatorics.

-

This configuration is not rigid. There is a quadrilateral in the middle,
and the circles can shift without changing their tangencies.
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Circle Packings

A circle packing is special because it is rigid:

the packing’s geometry is determined by its combinatorics.

-

This configuration is not rigid. There is a quadrilateral in the middle,
and the circles can shift without changing their tangencies.

The quadrilateral shows up clearly in the tangency graph.
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Circle Packings

A circle packing is special because it is rigid:

the packing’s geometry is determined by its combinatorics.

These are circle packings, and they are rigid. All the interstices are
curvilinear triangles.
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Circle Packings

A circle packing is special because it is rigid:

the packing’s geometry is determined by its combinatorics.

These are circle packings, and they are rigid. All the interstices are
curvilinear triangles.

The tangency graph of a packing is always a triangulation.
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The Brooks Parameter

(0, 0) (x, 0)

Given a positive x, form a curvilinear quadrilateral using reference circles with

diameter 1 centered at (0, 1/2) and (x, 1/2).
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The Brooks Parameter {2, . . .}

(0, 0) (x, 0)

Given a positive x, form a curvilinear quadrilateral using reference circles with

diameter 1 centered at (0, 1/2) and (x, 1/2).

Starting at the left end, put in as many “horizontal circles” as you can. A

horizontal circle is tangent to the top, bottom, and left sides of its enclosing

quadrilateral.

Call this number b0.
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The Brooks Parameter {2, 3, . . .}

(0, 0) (x, 0)

Now start at the top of the remaining unfilled quadrilateral, and put in as

many “vertical circles” as you can. A vertical circle is tangent to the top, left,

and right sides of its enclosing quadrilateral.

Call this number b1.
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The Brooks Parameter {2, 3, 4, . . .}

(0, 0) (x, 0)

Now put as many horizontal circles as you can into the remaining unfilled

quadrilateral, starting at the left end.

Call this number b2.
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The Brooks Parameter {2, 3, 4, 1, . . .}

(0, 0) (x, 0)

Now start at the top of the remaining unfilled quadrilateral, and put in as

many vertical circles as you can.

Call this number b3.
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The Brooks Parameter {2, 3, 4, 1, 3, 1, 2, 1, 3, 1, 5, 1, . . .}

(0, 0) (x, 0)

Continue alternately adding horizontal and vertical circles until either

• the last circle in a row or column is tangent on all four sides, or

• you run out of time or patience.
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The Brooks Parameter

(0, 0) (x, 0)

This algorithm gives us a map Scircle : [1,∞) → sequences of integers.

Note that Scircle(x) is a finite sequence only if the last circle in a row or column

is tangent to all four sides of its enclosing quadrilateral.

In this case, we have constructed a packing of the original quadrilateral.
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The Brooks Parameter

(0, 0) (x, 0)

Or the process may just go on forever.

37



The Brooks Parameter {2, 3, 4, 1, 3, 1, 2, 1, 3, 1, 5, 1, . . .}

(0, 0) (x, 0)

Define the Brooks parameter rcircle : [1,∞) → R+

by reading Scircle(x) as a continued fraction.

For the x in the picture (approximately 3.22), we have

rcircle(x) ≈ [2; 3, 4, 1, 3, 1, 2, 1, 3, 1, 5, 1, . . .] ≈ 2.312
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The Brooks Parameter

Observations:

• We have rcircle(2) = 1, rcircle(3) = 2, and in general, rcircle(n + 1) = n if

n is an integer.

• The function rcircle(x)− x is 1-periodic.

• If rcircle(x) is rational, then the original x-by-1 curvilinear quadrilateral

is packable.
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The Brooks Parameter

Questions:

• Is rcircle(x) differentiable?

• Is rcircle(x) continuous?

• Is rcircle(x) increasing? How closely does it mimic the analogous function

for square packing (namely, rsquare(x) = x)?

• Is rcircle(x) useful?
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The Brooks Parameter

1.48

1.49

1.51

1.52

2.2 2.4 2.6 2.8 3

1.2

1.4

1.6

1.8

2The function rcircle(·) is com-

putable (in theory, at least);

here’s a graph.
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Continuity
Why is rsquare(·) continuous?

-

rsquare(x0) = a0 +
1

a1 +
1

a2

rsquare(x0 + δ) = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
When we slide from a rational number x0 to x0 + δ, we introduce some new

coefficients (starting here with a3). By taking δ sufficiently small, we can

make a3 as large as we want, so that the new term
1

a3 + · · · can be made

arbitrarily small.
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Continuity

rsquare(x0) = a0 +
1

a1 + 1
a2+ 1

a3+ 1
a4+ 1

a5+···

rsquare(x0 + δ) = a0 +
1

a1 + 1
a2+ 1

a3+ 1
a4+ 1

a′5+···

If δ is small enough, then when we slide from an irrational x0 to x0 + δ, then

the first few coefficients in the CFE do not change.

By choosing δ sufficiently small, we can push the first change in coefficients

as far out as we like, and thus make the change in rsquare(x) arbitrarily small.
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Continuity
The function rcircle(·) is continuous for the same reasons.

rcircle(2 + δ) = 1 +
1

b1

When we introduce a new row or column of circles, we can choose δ so as to

make the number of new circles as large as we like.
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Continuity
The function rcircle(·) is continuous for the same reasons.

rcircle(x0 + δ) = 1 +
1

b1 + 1
b2+ 1

b3+ 1
b4+···

And if we start at an irrational x0, we may make δ small enough so that it

does not disturb b0, b1, b2, . . ., bn for whatever n we choose.
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Differentiability
Why is rsquare(·) differentiable at 1?

-

rsquare(1) = 1
rsquare(1 + ε) ≈ 1 +

1

(1/ε)
= 1 + ε

The new column contains approximately 1/ε squares, so rsquare(1+ε) ≈ 1+ε,
and

r′square(1) = lim
ε→0

(1 + ε)− 1

ε
= 1
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Differentiability

What is r′circle(1)?

y1
y2 y3

1
����

2

Exercise: Show that yk =
1

2
+

1

2(k + 1)
for k = 1, 2, 3, . . ..

Corollary: The diameter of the kth circle from the top is
1

2(k2 + k)
.
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Differentiability

Reasoning very roughly, it

takes on the order of
1√
2ε

cir-

cles to get down to a diameter

of ε.

The new column of circles with diameter ε at the middle therefore contains

on the order of
2√
2ε

circles. We get rcircle(1 + ε) ≈ 0 +
1

(2/
√

2ε)
, so that

r′circle(1) = lim
ε→0

1

ε
·
√

2ε

2
→∞
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Differentiability

2.2 2.4 2.6 2.8 3

1.2

1.4

1.6

1.8

2

One uses a linear fractional trans-

formation to move any row or col-

umn of “new” circles into this po-

sition and thus proves the

Theorem (Brooks, 1990): The

derivative of rcircle is infinite at

any x such that rcircle(x) is ratio-

nal.

So rcircle is an example of a function that is continuous on [1,∞) but is non-

differentiable at a dense set of points.
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Applications

Given a region bounded by circular arcs, you can add circles until the regions

that remain are all triangles or quadrilaterals.
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Applications

Given a region bounded by circular arcs, you can add circles until the regions

that remain are all triangles or quadrilaterals.
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Applications

Given a region bounded by circular arcs, you can add circles until the regions

that remain are all triangles or quadrilaterals.
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Applications

Given a region bounded by circular arcs, you can add circles until the regions

that remain are all triangles or quadrilaterals.
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Applications

Given a region bounded by circular arcs, you can add circles until the regions

that remain are all triangles or quadrilaterals.
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Applications

This can be completed to give a packing

if we can find a packing of each of the

quadrilaterals.

Sometimes a quadrilateral isn’t packable.

In that case, its Brooks parameter is ir-

rational. By the continuity of rcircle, you

can make the Brooks parameter rational

by making an arbitrarily small change to

the quadrilateral.

So,

Theorem family: Even if you’re given a non-packable region, there’s always

a packable one right nearby.
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