# Continued Fractions and Circle Packings 

Gregory Quenell

## Continued Fractions

A positive number $x$ can be written in the form

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ddots .}}}
$$

where $a_{0}$ is a non-negative integer and
$a_{k}$ is a positive integer for $k \geq 1$.
Notation: We write $\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ for the continued fraction above.

We write $\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right]$ for a continued fraction that terminates.

## Continued Fractions

Example: Write $x_{0}=99 \frac{44}{100}$ as a continued fraction.

$$
\begin{array}{rlrl}
x_{0}=99+\frac{11}{25} & \text { Let } a_{0}=\left\lfloor x_{0}\right\rfloor \text { and write } \\
x_{0} & =a_{0}+r_{0} \\
=99+\frac{1}{(25 / 11)} & \text { If } r_{0} \neq 0, \text { let } x_{1} & =\frac{1}{r_{0}}, \text { and write } \\
x_{0} & =a_{0}+\frac{1}{x_{1}}
\end{array}
$$

## Continued Fractions

Example: Write $x_{0}=99 \frac{44}{100}$ as a continued fraction.

$$
\begin{array}{rlr}
x_{0} & =99+\frac{11}{25} & \\
& =99+\frac{1}{(25 / 11)} & \text { Let } a_{1}=\left\lfloor x_{1}\right\rfloor \text { and write } \\
& =99+\frac{1}{2+\frac{3}{11}} & x_{1}=a_{1}+r_{1} \\
& =99+\frac{1}{2+\frac{1}{(11 / 3)}} & \text { If } r_{1} \neq 0, \text { let } x_{2}=\frac{1}{r_{1}}, \text { and rewrite } 0 \leq r_{1}<1 . \\
a_{1}+\frac{1}{x_{2}}
\end{array}
$$

## Continued Fractions

Example: Write $x_{0}=99 \frac{44}{100}$ as a continued fraction.

$$
\begin{array}{rlr}
x_{0} & =99+\frac{1}{2+\frac{1}{(11 / 3)}} & \text { Let } a_{2}=\left\lfloor x_{2}\right\rfloor \text { and write } \\
& =99+\frac{1}{2+\frac{1}{3+\frac{2}{3}}} & \text { If } x_{2} \neq 0, a_{2}+r_{2} \\
& =99+\frac{1}{2+\frac{1}{3+\frac{1}{(3 / 2)}}} & \quad \text { with } 0 \leq r_{2}<1 . \\
a_{2}+\frac{1}{x_{3}} &
\end{array}
$$

## Continued Fractions

Example: Write $x_{0}=99 \frac{44}{100}$ as a continued fraction.

$$
x_{0}=99+\frac{1}{2+\frac{1}{3+\frac{1}{(3 / 2)}}}
$$

$$
\text { Let } a_{3}=\left\lfloor x_{3}\right\rfloor \text { and write }
$$

$$
x_{3}=a_{3}+r_{3}
$$

If $r_{3} \neq 0$, let $x_{4}=\frac{1}{r_{3}}$, and rewrite $x_{3}$ as

$$
a_{3}+\frac{1}{x_{4}}
$$

## Continued Fractions

Example: Write $x_{0}=99 \frac{44}{100}$ as a continued fraction.

$$
\begin{array}{rlr}
x_{0} & =99+\frac{1}{2+\frac{1}{3+\frac{1}{1+\frac{1}{2}}}} & \text { Let } a_{4}=\left\lfloor x_{4}\right\rfloor \text { and write } \\
x_{4}=a_{4}+r_{4} \\
& \text { This time, } r_{4}=0, \text { so stop. } 0 \leq r_{4}<1 . \\
& =99+\frac{1}{2+\frac{1}{3+\frac{1}{1+\frac{1}{2+0}}}} & \\
& =[99 ; 2,3,1,2] &
\end{array}
$$

## Continued Fractions - Useful Facts

- The algorithm terminates - you get $r_{k}=0$ for some $k$ - if and only if $x_{0}$ is rational.

The number $x=[1 ; 4,1,4,2]$ is rational
... it's equal to $\frac{64}{53}$

The number $x=[3 ; 3,3,3,3, \ldots]$ is irrational $\ldots$ it's equal to $\frac{3+\sqrt{13}}{2}$

- The CFE of a number $x$ is eventually periodic if and only if $x$ is a quadratic surd.

$$
\begin{aligned}
& \sqrt{7}=[2 ; 1,1,1,4,1,1,1,4,1,1,1,4, \ldots] \\
& e=[2 ; 1,2,1,1,4,1,1,6,1,1,8,1,1,10, \ldots]
\end{aligned}
$$

## Continued Fractions - Useful Facts

- Every irrational positive $x$ has a unique continued fraction expansion. Every rational positive $x$ has two continued fractions expansions.

$$
[2 ; 3,3,1]=2+\frac{1}{3+\frac{1}{3+\frac{1}{1}}}=2+\frac{1}{3+\frac{1}{4}}=[2 ; 3,4]
$$

If we insist that $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}, 1\right]$ always be written as $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}+1\right]$, then every positive $x$ has a unique CFE.

## Continued Fractions - Evaluation

- To evaluate a terminating continued fraction, just unwind it from the end:

$$
[2 ; 3,4]=2+\frac{1}{3+\frac{1}{4}}=2+\frac{1}{(13 / 4)}=2+\frac{4}{13}=\frac{30}{13}
$$

- For a non-terminating continued fraction, this doesn't work so well:

$$
\begin{array}{r}
{[3 ; 7,15,1,292,1,1,1,2,1,3,1,14,2, \ldots]} \\
=3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292+\frac{1}{1+\cdots}}}}}
\end{array}
$$

Where do you start?

## Continued Fractions - Evaluation

Answer: Use Continued Fraction Convergents.
The value of $[3 ; 7,15,1,292,1,1,1,2,1,3,1,14,2 \ldots]$
is the limit of the sequence

$$
3, \quad[3 ; 7], \quad[3 ; 7,15], \quad[3 ; 7,15,1], \quad[3 ; 7,15,1,292], \quad \ldots
$$

That is

$$
\begin{array}{ccccc}
3, & 3+\frac{1}{7}, & 3+\frac{1}{7+\frac{1}{15}}, & 3+\frac{1}{7+\frac{1}{15+\frac{1}{1}}}, & 3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{293}}}} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & \frac{22}{7} & \frac{333}{106} & \frac{355}{113} & \frac{103993}{33102}
\end{array}
$$

## CONTINUED FRACTIONS - Evaluation

## Comments:

- The relatively large coefficient 292 means that the difference between

$$
3+\frac{1}{7+\frac{1}{15+\frac{1}{1}}} \text { and } 3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292}}}}
$$

is relatively small.
Tacking on a large coefficient gives a small change in the value of the continued fraction.

## Continued Fractions - Evaluation

## Comments:

- The continued fraction convergents alternately under- and overestimate the limiting value.

$$
\begin{aligned}
3 & =3 \\
{[3 ; 7] } & \approx 3.1428571429 \\
{[3 ; 7,15] } & \approx 3.1415094340 \\
{[3 ; 7,15,1] } & \approx 3.1415929204 \\
{[3 ; 7,15,1,292] } & \approx 3.1415926530 \\
{[3 ; 7,15,1,292,1] } & \approx 3.1415926539
\end{aligned}
$$

Visualizing Continued Fractions


Given a positive $x$, draw an $x$-by- 1 rectangle.

## Visualizing Continued Fractions



Starting at the left end, put in as many "horizontal squares" as will fit. Call this number $a_{0}$.

## Visualizing Continued Fractions



In the remaining space, put as many "vertical squares" as will fit. Call this number $a_{1}$.

## Visualizing Continued Fractions



In the remaining space, put as many horizontal squares as will fit. Call this number $a_{2}$.

## Visualizing Continued Fractions



In the remaining space, put as many vertical squares as will fit. Call this number $a_{3}$.

## Visualizing Continued Fractions



Then the "square-packing" sequence we get for $x$ is $\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\}$
In this example, the sequence terminates, and we write $\{2,3,4,2\}$.

## Visualizing Continued Fractions

## Comment:

This "square-packing" algorithm gives a map
$\mathcal{S}_{\text {square }}: \mathbb{R}^{+} \rightarrow$ sequences of integers
and it's no surprise that $\mathcal{S}_{\text {square }}(x)$ is the continued-fraction expansion of $x$.

Visualizing Continued Fractions


Visualizing Continued Fractions


## Visualizing Continued Fractions



In a square packing for an irrational number, the horizontal and vertical squares never quite fill up the space.

## Visualizing Continued Fractions

In a square packing for an irrational number, the horizontal and vertical squares never quite fill up the space.

## Circle Packings

A configuration of circles is an arrangement of circles in which no two circles have overlapping interiors.


A circle packing of a bounded region on the plane or a compact surface is a configuration in which all the interstices are curvilinear triangles.


## CIRCLE PACKINGS

A circle packing is special because it is rigid: the packing's geometry is determined by its combinatorics.


This configuration is not rigid. There is a quadrilateral in the middle, and the circles can shift without changing their tangencies.

## Circle Packings

A circle packing is special because it is rigid: the packing's geometry is determined by its combinatorics.


This configuration is not rigid. There is a quadrilateral in the middle, and the circles can shift without changing their tangencies.

The quadrilateral shows up clearly in the tangency graph.

## CIRCLE PACKINGS

A circle packing is special because it is rigid: the packing's geometry is determined by its combinatorics.


These are circle packings, and they are rigid. All the interstices are curvilinear triangles.

## Circle Packings

A circle packing is special because it is rigid: the packing's geometry is determined by its combinatorics.


These are circle packings, and they are rigid. All the interstices are curvilinear triangles.

The tangency graph of a packing is always a triangulation.

## The Brooks Parameter



Given a positive $x$, form a curvilinear quadrilateral using reference circles with diameter 1 centered at $(0,1 / 2)$ and $(x, 1 / 2)$.


Given a positive $x$, form a curvilinear quadrilateral using reference circles with diameter 1 centered at $(0,1 / 2)$ and $(x, 1 / 2)$.

Starting at the left end, put in as many "horizontal circles" as you can. A horizontal circle is tangent to the top, bottom, and left sides of its enclosing quadrilateral.

Call this number $b_{0}$.


Now start at the top of the remaining unfilled quadrilateral, and put in as many "vertical circles" as you can. A vertical circle is tangent to the top, left, and right sides of its enclosing quadrilateral.

Call this number $b_{1}$.


Now put as many horizontal circles as you can into the remaining unfilled quadrilateral, starting at the left end.

Call this number $b_{2}$.


Now start at the top of the remaining unfilled quadrilateral, and put in as many vertical circles as you can.

Call this number $b_{3}$.


Continue alternately adding horizontal and vertical circles until either

- the last circle in a row or column is tangent on all four sides, or
- you run out of time or patience.


## The Brooks Parameter



This algorithm gives us a map $\mathcal{S}_{\text {circle }}:[1, \infty) \rightarrow$ sequences of integers.
Note that $\mathcal{S}_{\text {circle }}(x)$ is a finite sequence only if the last circle in a row or column is tangent to all four sides of its enclosing quadrilateral.

In this case, we have constructed a packing of the original quadrilateral.


Or the process may just go on forever.



Define the Brooks parameter $r_{\text {circle }}:[1, \infty) \rightarrow \mathbb{R}^{+}$
by reading $\mathcal{S}_{\text {circle }}(x)$ as a continued fraction.

For the $x$ in the picture (approximately 3.22), we have

$$
r_{\text {circle }}(x) \approx[2 ; 3,4,1,3,1,2,1,3,1,5,1, \ldots] \approx 2.312
$$

## The Brooks Parameter

## Observations:

- We have $r_{\text {circle }}(2)=1, r_{\text {circle }}(3)=2$, and in general, $r_{\text {circle }}(n+1)=n$ if $n$ is an integer.
- The function $r_{\text {circle }}(x)-x$ is 1-periodic.
- If $r_{\text {circle }}(x)$ is rational, then the original $x$-by- 1 curvilinear quadrilateral is packable.


## The Brooks Parameter

## Questions:

- Is $r_{\text {circle }}(x)$ differentiable?
- Is $r_{\text {circle }}(x)$ continuous?
- Is $r_{\text {circle }}(x)$ increasing? How closely does it mimic the analogous function for square packing (namely, $\left.r_{\text {square }}(x)=x\right)$ ?
- Is $r_{\text {circle }}(x)$ useful?


## The Brooks Parameter

The function $r_{\text {circle }}(\cdot)$ is computable (in theory, at least); here's a graph.



## Continuity

Why is $r_{\text {square }}(\cdot)$ continuous?


When we slide from a rational number $x_{0}$ to $x_{0}+\delta$, we introduce some new coefficients (starting here with $a_{3}$ ). By taking $\delta$ sufficiently small, we can make $a_{3}$ as large as we want, so that the new term $\frac{1}{a_{3}+\cdots}$ can be made arbitrarily small.

## CONTINUITY

$$
\begin{aligned}
& r_{\text {square }}\left(x_{0}\right)=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\frac{1}{a_{5}+\ldots}}}}} \\
& r_{\text {square }}\left(x_{0}+\delta\right)=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\frac{1}{a_{5}^{\prime}+\ldots}}}}}
\end{aligned}
$$



If $\delta$ is small enough, then when we slide from an irrational $x_{0}$ to $x_{0}+\delta$, then the first few coefficients in the CFE do not change.

By choosing $\delta$ sufficiently small, we can push the first change in coefficients as far out as we like, and thus make the change in $r_{\text {square }}(x)$ arbitrarily small.

## Continuity

The function $r_{\text {circle }}(\cdot)$ is continuous for the same reasons.


$$
r_{\text {circle }}(2+\delta)=1+\frac{1}{b_{1}}
$$

When we introduce a new row or column of circles, we can choose $\delta$ so as to make the number of new circles as large as we like.

## Continuity

The function $r_{\text {circle }}(\cdot)$ is continuous for the same reasons.


And if we start at an irrational $x_{0}$, we may make $\delta$ small enough so that it does not disturb $b_{0}, b_{1}, b_{2}, \ldots, b_{n}$ for whatever $n$ we choose.

## DIFFERENTIABILITY

Why is $r_{\text {square }}(\cdot)$ differentiable at 1 ?


The new column contains approximately $1 / \varepsilon$ squares, so $r_{\text {square }}(1+\varepsilon) \approx 1+\varepsilon$, and

$$
r_{\text {square }}^{\prime}(1)=\lim _{\varepsilon \rightarrow 0} \frac{(1+\varepsilon)-1}{\varepsilon}=1
$$

## DIFFERENTIABILITY

What is $r_{\text {circle }}^{\prime}(1)$ ?


Exercise: Show that $y_{k}=\frac{1}{2}+\frac{1}{2(k+1)}$ for $k=1,2,3, \ldots$.
Corollary: The diameter of the $k^{\text {th }}$ circle from the top is $\frac{1}{2\left(k^{2}+k\right)}$.

## DIFFERENTIABILITY

Reasoning very roughly, it takes on the order of $\frac{1}{\sqrt{2 \varepsilon}}$ circles to get down to a diameter of $\varepsilon$.


The new column of circles with diameter $\varepsilon$ at the middle therefore contains on the order of $\frac{2}{\sqrt{2 \varepsilon}}$ circles. We get $r_{\text {circle }}(1+\varepsilon) \approx 0+\frac{1}{(2 / \sqrt{2 \varepsilon})}$, so that

$$
r_{\text {circle }}^{\prime}(1)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \cdot \frac{\sqrt{2 \varepsilon}}{2} \rightarrow \infty
$$

## DIFFERENTIABILITY

One uses a linear fractional transformation to move any row or column of "new" circles into this position and thus proves the
Theorem (Brooks, 1990): The derivative of $r_{\text {circle }}$ is infinite at any $x$ such that $r_{\text {circle }}(x)$ is rational.


So $r_{\text {circle }}$ is an example of a function that is continuous on $[1, \infty)$ but is nondifferentiable at a dense set of points.

## Applications



Given a region bounded by circular arcs, you can add circles until the regions that remain are all triangles or quadrilaterals.

## Applications



Given a region bounded by circular arcs, you can add circles until the regions that remain are all triangles or quadrilaterals.

## Applications



Given a region bounded by circular arcs, you can add circles until the regions that remain are all triangles or quadrilaterals.

## Applications



Given a region bounded by circular arcs, you can add circles until the regions that remain are all triangles or quadrilaterals.

## Applications



Given a region bounded by circular arcs, you can add circles until the regions that remain are all triangles or quadrilaterals.

## Applications

This can be completed to give a packing if we can find a packing of each of the quadrilaterals.

Sometimes a quadrilateral isn't packable. In that case, its Brooks parameter is irrational. By the continuity of $r_{\text {circle }}$, you can make the Brooks parameter rational by making an arbitrarily small change to the quadrilateral.


So,
Theorem family: Even if you're given a non-packable region, there's always a packable one right nearby.

## REFERENCES

- Robert Brooks, On the deformation theory of classical Schottky groups, Duke Mathematical Journal 52, 1985.
- _ , Circle packings and co-compact extensions of Kleinian groups, Inventiones mathematicae 86, 1986.
, The continued fraction parameter in the deformation theory of classical Schottky groups, preprint, 1990.
- Kenneth Stephenson, The approximation of conformal structures via circle packing, preprint.
- G. Brock Williams, Noncompact surfaces are packable, preprint 2001.

