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1 Walks and graphs

Let Γ be a finite, undirected, simple graph with n vertices. We will use the
notation i ∼ j to indicate that two vertices i and j in Γ are joined by an
edge. Let A be an adjacency matrix for Γ. That is, A is an n × n matrix
with rows and columns indexed by the vertices of Γ, and

[A]ij =

{
1 if i ∼ j
0 if i 6∼ j.

We use the notation [A]ij to denote the entry in the ith row and jth column
of the matrix A.

If m is a non-negative integer and i and j are vertices in Γ, then an m-walk
from i to j is a sequence

v0, e1, v1, e2, v2, . . . , vm−1, em, vm

of vertices vα and edges eβ such that

1. v0 = i
2. eα is incident on vα and vα−1 for 1 ≤ α ≤ m
3. vm = j.

The following is well-known ([1], Lemma 2.5, for example).
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Theorem 1 Let A be an adjacency matrix for a simple, undirected, finite
graph Γ. For each non-negative integer m and each pair of vertices i and j
in Γ, the number of m-walks from i to j is equal to [Am]ij.

Proof We adopt the convention that a zero-walk can go only from a vertex to
itself, and for each vertex there is exactly one such walk. Thus the number
of zero-walks from i to j is 1 if i = j and 0 if i 6= j. Since A0 = I, the
statement holds for m = 0.

There exists exactly one 1-walk from i to j if and only if i ∼ j, and there are
zero 1-walks from i to j otherwise. Since the entry [A]ij is 1 when i ∼ j and
0 when i 6∼ j, the statement holds for m = 1.

Now suppose m ≥ 2 and the number of (m− 1)-walks from i to any vertex k
is equal to [Am−1]ik. Every m-walk from vertex i to vertex j may be viewed
as an (m− 1) walk to a neighbor k of j, followed by a single step from k to
j. In fact, the set of (m− 1)-walks from i to neighbors of j is in one-to-one
correspondence with the set of m-walks from i to j. Thus

#(m-walks from i to j) =
∑

k∼j

[Am−1]ik

where the sum is taken over all neighbors k of j. The expression on the right
can be obtained by matrix multiplication; in fact

∑

k∼j

[Am−1]ik = [Am−1A]ij,

so that we get

#(m-walks from i to j) = [Am]ij

as required.

2 Counting geodesics

An m-walk will be called an m-geodesic if it does not traverse the same edge
twice in succession. In order to count m-geodesics, we introduce the n × n
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matrices Gm. Let [Gm]ij be the number of m-geodesics from vertex i to
vertex j.

Clearly, G1 is the same as the adjacency matrix A. We will adopt the con-
vention that G0 is the identity matrix I. The matrix G2, however, differs
from A2, since each diagonal entry [A2]ii includes non-geodesic 2-walks from
vertex i to each of its neighbors and back. That is, we have A2 = G2 + D,
where D is a diagonal matrix with [D]ii equal to the degree of vertex i.

For m ≥ 3, each m-geodesic from vertex i to vertex j can be viewed an an
(m− 1)-geodesic from i to a neighbor k of j, followed by a single step from
k to j. Thus, all the m-geodesics from i to j are counted by the expression

∑

k∼j

[Gm−1]ik (1)

in which the sum is taken over all neighbors k of j.

Unfortunately, expression (1) also counts m-walks from i to j in which the
antepenultimate vertex is j and the last step is a backtrack from a neighbor
of j to j. We can represent the two different kinds of m-walks counted by
expressing (1) with a picture equation

∑

k∼j

[Gm−1]ik = #




m−1

i j




+ #




m−2

i j




(2)

in which each shaded circle represents the set of neighbors k of vertex j.

We have overcounted by including the m-walks in the second term on the
right side of (2), each of which has a backtrack in its last two edges. We
correct for this overcounting by subtracting the term
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∑

k∼j

[Gm−2]ij, (3)

(note that the matrix index is ij, rather than ik; this is intentional) which
accounts for all the m-walks from i to j which consist of an (m− 2)-geodesic
from i to j followed by a 2-walk from j to j, via some neighbor k of j.

Unfortunately, in addition to the m-walks we just described, expression (3)
counts m-walks from i to j which contain an (m − 3)-geodesic from i to a
neighbor k of j followed by three traversals of the edge from j to k. Pictorially,
we have

∑

k∼j

[Gm−2]ij = #




m−2

i j




+ #




m−3

i j




. (4)

By subtracting
∑

[Gm−2]ij from
∑

[Gm−1]ik, we solve the problem of over-
counting the walks in the second term on the right side of (2), but we have
now oversubtracted the walks in the second term on the right side of (4).
Since these walks correspond to (m − 3)-geodesics from i to neighbors of j,
we compensate for our oversubtraction by adding the expression

∑

k∼j

[Gm−3]ik. (5)

Again, we have overcompensated, because expression (5), in addition to the
walks we want, includes walks which pass through j at the (m − 4)th step
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and then traverse an edge between j and some neighbor k four times in
succession. That is,

∑

k∼j

[Gm−3]ik = #




m−3

i j




+ #




m−4

i j




. (6)

The pattern which emerges from this argument says that

[Gm]ij =
∑

k∼j

([Gm−1]ik − [Gm−2]ij + [Gm−3]ik − [Gm−4]ij + · · ·) (7)

with G1 = A and G0 = I.

It is not hard to check that the summations in (7) correspond to right-
multiplication by certain matrices. Specifically, letting A denote the adja-
cency matrix and D denote the diagonal matrix whose iith entry is equal to
the degree of vertex i, we have

Theorem 2 The geodesic-counting matrices Gm for a graph with adjacency
matrix A and degree matrix D satisfy the relations G0 = I, G1 = A, and for
m ≥ 2, Gm = Gm−1A−Gm−2D + Gm−3A−Gm−4D + · · ·.

From Theorem 2, it follows immediately that for m ≥ 3, we have

Gm −Gm−2 = Gm−1A−Gm−2D. (8)

Now let F (u) be an ordinary generating function for the matrices Gm. That
is, let

F (u) =
∞∑

m=0

Gmum.
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Using relation (8) and the facts that G0 = I, G1 = A and G2 = A2 −D, we
determine that

F (u)− F (u)Au + F (D − I)u2 = I − Iu2.

We can solve this for F (u), and thus in some sense determine all the matrices
Gm at once. We have (see [2], Lemma 1)

Theorem 3 The generating function F (u) satisfies

F (u) = (1− u2)(I − Au + (D − I)u2)−1.

3 Graphs with edge lengths

Next we introduce a length function on the edges of our graph Γ. If i and j
are vertices in Γ with i ∼ j, then `(i, j) will be some positive real number,
which we will think of as the length of the edge connecting i and j. If i 6∼ j,
then `(i, j) is undefined.

We construct a length-adjacency matrix A for such a graph by introducing
a dummy variable t and setting

[A]ij =

{
t`(i,j) if i ∼ j

0 if i 6∼ j.

Let v0, e1, v1, e2, . . . , vm−1, em, vm be an m-walk from v0 to vm. We will say
that the length of this m-walk is the positive real number

`(v0, v1) + `(v1, v2) + · · ·+ `(vm−1, vm).

We have the following extension of Theorem 1.

Theorem 4 For each non-negative integer m and each pair of vertices i and
j, the entry [Am]ij is an expression of the form

∑

r∈L

αrt
r
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where L is the set of real numbers r for which there exists an m-walk of length
r from i to j, and for each r ∈ L, αr is equal to the number of m-walks of
length r from i to j.

Proof We adopt the convention that all 0-walks have length 0. As such,
for vertices i and j, we have exactly one 0-walk of length 0 if i = j and no
0-walks otherwise. Since A0 = I, the statement holds for m = 0.

If i ∼ j, then there is a 1-walk of length `(i, j) from i to j. If i 6∼ j then
there are no 1-walks from i to j. By the definition of A, the statement holds
for m = 1.

Now suppose m ≥ 2 and each entry [Am−1]ij has the form given in the
statement of the theorem. An m-walk of length ` from i to j may be viewed
as an (m− 1)-walk to a neighbor k of j (which must have length `− `(j, k))
followed by a traversal of the edge from k to j. Since every m-walk from i
to j must have a neighbor of j as its penultimate vertex, we can count them
by summing over neighbors k of j. We get

#

(
m-walks from i to j

of length `

)
=

∑

k∼j

#

(
(m− 1)-walks from i to k

of length `− `(j, k)

)

=
∑

k∼j

coefficient of t`−`(j,k) in [Am−1]ik

= coefficient of t` in
∑

k∼j

[Am−1]ikt
`(j,k)

= coefficient of t` in [Am−1A]ij

as required.

4 Geodesics with edge lengths

Next we wish to count geodesics of a given length on a graph equipped with
an edge-length function. As in Section 2, we construct a sequence of matrices
Gm whose entries will count m-geodesics. Specifically, the matrix entry [Gm]ij
will be an expression of the form

∑

r∈L

αrt
r
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where L is the set of real numbers r for which there exists an m-geodesic of
length r from i to j, and for each r ∈ L, αr is the number of m-geodesics
from i to j with length r.

Since each entry in Gm is a function of t, we will write Gm(t). We will also
find it convenient in this section to treat the matrix A as a function of t,
writing A(t).

The analogue of the degree matrix D from Section 2 is a diagonal matrix
D(t) with

[D(t)]jj =
∑

k∼j

t`(j,k).

As in Section 2, our conventions about 0-walks make it easy to see that G0(t)
is the identity matrix, and by the definitions of A(t) and G1(t), it is clear
that G1(t) = A(t).

The relation between G2(t) andA2(t) is also familiar. If i 6= j, then [G2(t)]ij =
[A2(t)]ij. Along the diagonal, however, A2(t) includes terms which do not
correspond to geodesics. Specifically,

[A2(t)]jj =
∑

k∼j

t2`(j,k)

with the sum taken over all neighbors k of j. Thus we get the relation

G2(t) = A2(t)−D(t2).

For m ≥ 3, we compute [Gm(t)]ij by considering (m− 1)-geodesics to neigh-
bors k of j. The expression

∑

k∼j

[Gm−1(t)]ikt
`(j,k) (9)

contains a term t` for every m-geodesic from i to j of length `. Unfortunately,
as before, this expression overcounts. It includes a term t` for each m-walk
from i to j of length ` made up of an (m − 2)-geodesic from i to j followed
by a step out to a neighbor k of j and then a step back to k (cf. equation
(2)).

8



To correct for this overcounting, we subtract the expression

∑

k∼j

[Gm−2(t)]ijt
2`(j,k) (10)

which includes a term t` for every m-walk of the type overcounted in (9).
However, expression (10) does more than we wanted; its count also takes in
m-walks from i to j in which the last three steps all traverse the same edge
(cf. equation (4)). To compensate for this overcounting (or oversubtraction,
really), we add the expression

∑

k∼j

[Gm−3(t)]ikt
3`(j,k) (11)

which includes a term t` for each m-walk from i to j of length ` which consists
of an m-geodesic from i to a neighbor of j followed by three traversals of the
same edge. Once again, though (cf. equation (6)), this expression carries
along with it an undesirable side-effect, and we must continue subtracting
and adding appropriate terms in order to compensate.

The pattern which emerges from this process is as follows. For m ≥ 3, we
have

[Gm(t)]ij =
∑

k∼j

(
[Gm−1(t)]ikt

`(j,k) − [Gm−2(t)]ijt
2`(j,k)

+ [Gm−3(t)]ikt
3`(j,k) − [Gm−4(t)]ijt

4`(j,k) + · · ·
)

(12)

It is not hard to show that the summation in the odd terms corresponds to
right multiplication by the matrix A evaluated at a suitable power of t, and
the summation in the even terms corresponds to right multiplication by the
matrix D, also evaluated at a suitable power of t. Specifically, we have

Theorem 5 Let A(t) and D(t) be the length-adjacency and length-degree
matrices, respectively, of a graph Γ. The matrices Gm(t) which count the
number of m-geodesics of any given length in Γ satisfy G0(t) = I, G1(t) =
A(t), and for m ≥ 2,

Gm(t) = Gm−1(t)A(t)− Gm−2(t)D(t2)

+Gm−3(t)A(t3)− Gm−4(t)D(t4) + · · · .
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