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We consider the well-known theorem

Theorem 1 If A and B are square matrices of the same size then Tr(AB) =
Tr(BA).

This result appears as an exercise in many introductory textbooks on linear
algebra ([1, p. 76], [4, p. 216], [6, p. 105], and [7, p. 41], for example). Its
placement usually suggests that the expected solution is a nuts-and-bolts
proof whose key step involves a change in the order of a sum of products of
matrix elements. (See [2, p. 207].) By considering Theorem 1 as a statement
about graphs, we develop a more intuitive way to view this result.

We also gain some insight into the way this result extends to the product
of more than two matrices. Repeated application of Theorem 1 shows that
the trace of a product of more than two matrices in invariant under cyclic
permutations of the factors. It is not difficult to construct examples showing
that the trace fails to be invariant under other permutations of the factors.
A graph-theoretic approach makes it clear why this should be so.

We begin with a finite directed graph G. Let A be an adjacency matrix for
G. That is, A is a square matrix with rows and columns indexed by the
vertices of G in which the (i, j)th entry is equal to 1 if there is an edge from
vertex i to vertex j and 0 otherwise.

An n-walk from vertex i to vertex j in G is a sequence e1, e2, . . . , en of n
edges such that the initial vertex of e1 is i, the terminal vertex of en is j,
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and for k = 1, . . . , n− 1, the terminal vertex of ek is the same as the initial
vertex of ek+1. A familiar proof by induction (see [3] or [5], among others)
establishes the following.

Theorem 2 For each integer n ≥ 0, the (i, j)th entry of the matrix An is
equal to the number of n-walks in G beginning at vertex i and ending at vertex
j.

An n-walk is closed if it begins and ends at the same vertex. It follows
from Theorem 2 that the (i, i)th entry of An is equal to the number of closed
n-walks at vertex i.

Now suppose that G1, G2, . . . , Gd are directed graphs, each with the same
(finite) number of vertices. Using a set of pens with colors 1, 2, . . . , d, we
draw these d directed graphs, using color k for graph Gk, on the same set
of vertices. The result is a graph G (actually, a directed multigraph) on the
common set of vertices in which each directed edge has some color. We will
say that an n-walk e1, e2, . . . , en in G has color sequence c1, c2, . . . , cn if edge
ek has color ck for k = 1, . . . , n.

Let A1, A2, . . . , Ad be the adjacency matrices for the graphs G1, G2, . . . , Gd.
A slight variation on the usual proof of Theorem 2 (which we leave to the
reader) yields the following.

Theorem 3 For each sequence c1, c2, . . . , cn where each ck is an integer with
1 ≤ ck ≤ d, the (i, j)th entry of the matrix product Ac1Ac2 · · ·Acn is equal to
the number of n-walks beginning at vertex i, ending at vertex j, and having
color sequence c1, c2, . . . , cn.

The diagonal entries of this matrix product count closed walks, so we have
the corollary

Corollary 4 The trace Tr(Ac1Ac2 · · ·Acn) is equal to the total number of
closed n-walks in G with color sequence c1, c2, . . . , cn.
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Now a closed n-walk is a cyclic affair, and may be considered to begin and
end at any of its vertices. Put another way, for each integer s, there is a
one-to-one correspondence between closed n-walks whose color sequence is
c1, c2, . . . , cn and those whose color sequence is c1+s, c2+s, . . . cn+s, where the
subscripts are read modulo n. This has the following interpretation in terms
of traces:

Theorem 5 If A1, A2, . . . , Ad are square zero-one matrices all of the same
size and c1, c2, . . . , cn is a sequence in which each ck is an integer with 1 ≤
ck ≤ d, then for each integer s, we have

Tr(Ac1Ac2 · · ·Acn) = Tr(Ac1+sAc2+s · · ·Acn+s)

where the subscripts are read modulo n.

When d = 2, we get a special case of Theorem 1. As we mentioned above,
Theorem 5 is implied by Theorem 1, so we have nothing new here except
perhaps some insight into why Theorem 1 works.

A directed graph G may be viewed as an undirected graph if, whenever it
has an edge leading from vertex i to vertex j, it also has an edge leading
from vertex j back to vertex i. This condition is equivalent to the adjacency
matrix A being symmetric. If each of the graphs G1, G2, . . . , Gd is undirected,
and we use our colored pens to draw them on a common set of vertices as
above, then every n-walk in the resulting colored graph is reversible. More
precisely, there is a one-to-one correspondence between closed walks with
the color sequence c1, c2, . . . , cn and closed walks with the color sequence
cn, cn−1, . . . , c1. This has the following consequence for traces of products.

Theorem 6 If A1, A2, . . . , Ad are symmetric zero-one matrices all of the
same size and c1, c2, . . . , cn is a sequence in which each ck is an integer with
1 ≤ ck ≤ d, then

Tr(Ac1Ac2 · · ·Acn) = Tr(Acσ(1)
Acσ(2)

· · ·Acσ(n)
)

for each dihedral permutation σ on n letters.
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To get versions of Theorem 5 and Theorem 6 in which the matrices may
have entries other than zero and one while maintaining our graph-theoretic
approach, we introduce the idea of a weighted graph. This is simply a graph
in which each edge has a weight assigned to it. For our purposes, this weight
may be a real or complex number (or, for that matter, may come from any
commutative ring). The (i, j)th entry of an adjacency matrix for a weighted
graph is equal to the weight of the directed edge from vertex i to vertex
j. Given an n-walk e1, e2, . . . , en in a weighted graph, we will say that the
weight of the n-walk is equal to the product of the weights of the edges it
traverses.

With these definitions, it is straightforward to prove the generalization of
Theorem 2

Theorem 7 If A is an adjacency matrix for a weighted directed graph G,
then the (i, j)th entry of An is equal to the sum of the weights of all n-walks
from vertex i to vertex j in G.

Any matrix M may then be viewed as the adjacency matrix of a weighted,
directed graph in which each vertex i is the beginning point for directed edges
going to every vertex of the graph (including i itself) and the weight assigned
to the edge going from vertex i to vertex j is the (i, j)th entry of the matrix
M .

Extending this idea, given a collection M1, M2, . . . , Md of square matrices of
the same size along with our d different colored pens, we may construct a
weighted, colored graph G. This graph is quite messy to draw, because of
its large number of edges. If G has m vertices, then each vertex of G is the
beginning point for m weighted edges of each of the d colors. Still, matrix
multiplication effectively counts walks in the graph G, and the usual proof of
Theorem 2 may be adapted to weighted graphs with colored edges to show

Theorem 8 Let M1,M2, . . . , Md be square matrices all of the same size, and
form the weighted colored graph G as above. Given a sequence c1, c2, . . . , cn

in which each ck is an integer with 1 ≤ ck ≤ d, the (i, j)th entry of the product

Mc1Mc2 . . .Mcn
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is equal to the sum of the weights of all the n-walks from vertex i to vertex j
in G which have color sequence c1, c2, . . . , cn.

We then have

Corollary 9 In the situation in Theorem 8, the trace Tr(Mc1Mc2 · · ·Mcn) is
equal to the sum of the weights of all the closed n-walks in the graph G with
color sequence c1, c2, . . . , cn.

Next we observe as before that we can view a closed n-walk in G as beginning
and ending at any of its vertices, and furthermore that such a cycling of the
vertices does not change the weight of the closed n-walk. We also note that
if the matrices Mi are symmetric, then we may reverse the direction of each
closed walk in the G, and that reversing direction does not affect the weight
of the n-walk. These observations imply

Theorem 10 Let M1, M2, . . . , Md be square matrices all of the same size,
and let c1, c2, . . . , cn be a sequence in which each ck is an integer with 1 ≤
ck ≤ d. Then

Tr(Mc1Mc2 . . .Mcn) = Tr(Mcσ(1)
Mcσ(2)

· · ·Mcσ(n)
) (1)

for any cyclic permutation σ of n letters. Furthermore, if each Mi is sym-
metric, then equation (1) holds for any dihedral permutation σ.

Again, we remark that the first part of Theorem 10, at least, follows im-
mediately from the well-known Theorem 1. However, our graph-theoretic
approach helps provide some intution about the traces of products and the
significance of cyclic and dihedral permutations in this setting.

5



References

[1] Howard Anton. Elementary Linear Algebra. John Wiley & Sons, New
York NY, seventh edition, 1994.

[2] Sheldon Axler. Linear Algebra Done Right. Springer, New York NY,
1996.

[3] Norman Biggs. Algebraic Graph Theory. Cambridge University Press,
Cambridge, second edition, 1993.

[4] Charles W. Curtis. Linear Algebra: An Introductory Approach. Springer-
Verlag, New York NY, 1984.

[5] Susanna S. Epp. Discrete Mathematics With Applications. PWS, Boston
MA, second edition, 1995.

[6] Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice-Hall, Engle-
wood Cliffs NJ, second edition, 1971.

[7] Serge Lang. Linear Algebra. Addison-Wesley, Reading MA, 1966.

6


