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A familiar-looking problem

For each α ∈ [0, 1] let `α be the line segment in R2 connecting the point (α, 0)

with the point (0, 1 − α). Figure 1 shows the segments `α for α equal to

integer multiples of 1/20.
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Figure 1: Line segments connecting (α, 0) with (0, 1− α)

The upper right edge of this collection suggests a curve C from (1, 0) to

(0, 1). This curve is an envelope of the collection {`α : 0 ≤ α ≤ 1}, and has
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the property that each of its tangent lines contains one of segments `α. We’d

like to find an equation for C.

Although C is characterized in terms of tangent lines, and thus is a so-

lution to a differential equation, it turns out that we can determine C in

a quite elementary way. The key is to recognize that when α and β are

close together, the intersection point of `α and `β is close to C, and as β

approaches α, the intersection point of `α and `β approaches a point of C,

as in Figure 2.
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Figure 2: When α is close to β, the segments `α and `β intersect near C

To get the calculations going, we parametrize each segment `α as

`α(t) = (1− t)(α, 0) + t(0, 1− α)

= ((1− t)α, t(1− α)), 0 ≤ t ≤ 1.

If β 6= α, then `α and `β intersect at the point

`α(1− β) = `β(1− α) = (αβ, (1− α)(1− β)).
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To get a point on C, we want to take the limit of this last expression as

β → α. Even a common-sense notion of limits will suffice here: we simply

substitute α for β to find that the point (α2, (1 − α)2) lies on C. Just like

that, we have a parametrization for C:

x = α2 and y = (1− α)2. (1)

With 0 ≤ α ≤ 1, both α and 1− α are nonnegative, so we can write (1) as

√
x +

√
y = 1. (2)

A popular (in one sense) problem in calculus textbooks asks the student

to show that the sum of the x- and y-intercepts of the tangent lines to the

curve
√

x +
√

y =
√

c is always equal to c [4, p. 234, problem 38]. Here we

have solved what appears to be a more difficult problem—finding a curve

whose tangent lines have intercepts with a constant sum—and we have done

so with only the merest hint of the calculus.

A curve with equation |ax|p + |by|p = cp, where 0 < p < 2, is called

a hypoellipse [6]. Since the equation of our envelope C has this form with

a = b = c = 1, we can describe C as one quarter of the unit hypocircle with

exponent 1/2.

Eliminating the radicals from (2), we find that the points of C satisfy

x2 + y2 − 2xy − 2x− 2y + 1 = 0.

This is clearly a conic section, and since its discriminant is 0, it is a parabola.

If we lift the restriction 0 ≤ α ≤ 1 and consider the `α as lines rather than just

line segments, we find that the envelope of this family of lines is a parabola

tangent to the coordinate axes and containing the first-quadrant part of the

unit hypocircle. Figure 3 shows how all the pieces fit together.

String art

Figure 1 calls to mind the craft of string art, in which the artist creates a

decorative pattern by driving nails into a board at intervals along a few lines
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Figure 3: The parabola emerges when we draw the `α as lines rather than

line segments and allow values of α outside [0, 1]

or curves and then connecting selected pairs of nails with stretched strings.

The result of such an exercise is shown in Figure 4.

The very simple string art recipe with nails evenly spaced along the x-

and y-axes and pairs chosen so that the sum of their x- and y-coordinates is

constant gives the pattern in Figure 1 with the upper right edge approxi-

mating a branch of a hypocircle.

Evenly-spaced nails along perpendicular lines go only so far as an outlet

for creative energy, and the ambitious string artist will surely want to exper-

iment with different spacings, nonperpendicular lines, and nonlinear curves.

Likewise, the mathematician will ask what sort of envelopes arise when we

vary the recipe for the parametrized family {`α}. In the following sections, we
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Figure 4: An unpretentious (to say the least) example of string art

experiment with some of these string-art variations, and see what envelope

curves we get.

Spacing functions

First, let’s keep the nails on the x- and y-axes, but change the way we

space them. Each line `α will be determined by two points, (X(α), 0) and

(0, Y (α)), where X and Y are “spacing functions”, which we will assume to

be differentiable.

Again, we begin by finding the intersection point of two lines in this

family. A straightforward calculation shows that `α and `β intersect at the

point
(

X(α)X(β)(Y (β)− Y (α))

X(α)Y (β)− Y (α)X(β)
,
Y (α)Y (β)(X(α)−X(β))

X(α)Y (β)− Y (α)X(β)

)
. (3)

To find a point on the envelope of the family `α, we take the limit of (3)
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as β → α. We use the standard trick of adding and subtracting X(α)Y (α)

in the denominator and then introducing some (β − α)s to form difference

quotients. For the x-coordinate of the envelope point, we get

x = lim
β→α

X(α)X(β)(Y (β)− Y (α))

X(α)(Y (β)− Y (α))− Y (α)(X(β)−X(α))

= lim
β→α

X(α)X(β)Y (β)−Y (α)
β−α

X(α)Y (β)−Y (α)
β−α

− Y (α)X(β)−X(α)
β−α

. (4)

Now X and Y were assumed differentiable, so the mean value theorem says

that the limit in (4) is equal to

(X(α))2Y ′(α)

X(α)Y ′(α)− Y (α)X ′(α)
. (5)

A similar calculation gives the y-coordinate of a point on the envelope as

−(Y (α))2X ′(α)

X(α)Y ′(α)− Y (α)X ′(α)
. (6)

Expressions (5) and (6) parametrize the envelope of the family `α determined

by any pair of spacing functions X and Y .

Linear spacing functions: the details

In our first example, we used the particularly simple spacing functions

X(α) = α and Y (α) = 1− α.

Let’s look at what we get for an envelope when X and Y are general linear

functions

X(α) = rα + h and Y (α) = sα + k,

with r and s nonzero. In this case, (5) and (6) yield the parametrization

x =
(rα + h)2s

sh− rk
and y = −(sα + k)2r

sh− rk
, (7)
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provided that sh 6= rk. (If sh = rk, then the lines `α are parallel, and there

is no envelope.)

What sort of curve is this? Guided by our earlier calculations, we begin

experimenting with
√
|x| and

√
|y|, and eventually find that the x and y in

(7) satisfy

√
|sx|+

√
|ry| =

|(rα + h)s|√
|sh− rk| +

|(sα + k)r|√
|sh− rk| . (8)

If (rα+h)s and (sα+k)r have different signs, then the right side of (8) reduces

to
√
|sh− rk|. Thus the points of our envelope curve for which (rα + h)s

and (sα + k)r have different signs lie on the hypoellipse
√
|sx| +

√
|ry| =√

|sh− rk|.
To see that we have a parabola as well, we need only verify (a tedious but

straightforward task) that the parametrization in (7) satisfies the equation

s2x2 + r2y2 + 2rsxy − 2(sh− rk)(sx− ry) + (sh− rk)2 = 0 (9)

for every value of α.

As in our introductory example, this parabola is tangent to both the coor-

dinate axes. The points of tangency are (0, (rk − sh)/r) and ((sh− rk)/s, 0).

As a simple example, take X(α) = 2α+1 and Y (α) = α+2. The envelope

(Figure 5) is parametrized by

x = −(2α + 1)2

3
and y =

2(α + 2)2

3
.

It is tangent to the coordinate axes at the points (0, 3/2) (where α = −1/2)

and (−3, 0) (where α = −2). Between the two points of tangency, the points

on the envelope satisfy
√
|x|+

√
|2y| = √

3.

The reader with a taste for the classical theory of conic sections might

want to verify that the focus and directrix of the parabola given by (9) are

(
s(sh− rk)

r2 + s2
,−r(sh− rk)

r2 + s2

)
and rx− sy = 0.
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Figure 5: With X(α) = 2α+1 and Y (α) = 2+α, the envelope is a parabola

in the second quadrant. The quarter hypoellipse is tangent to the `α with

−2 ≤ α ≤ −1/2.

Off the coordinate axes

Suppose now that the string artist chooses (nonparallel) nailing lines n1 and

n2 other than the coordinate axes. The mathematician may then straighten

out this skewed situation by cooking up an affine transformation A that takes

the x-axis to line n1 and the y-axis to line n2.

Assuming that the string artist is still spacing the nails evenly, the math-

ematician can find spacing functions X(α) = rα+h and Y (α) = sα+k such

that A(X, 0) and A(0, Y ) agree with the artist’s nailing pattern. The enve-

lope curve on the string art will then be the image under A of the parabolic

curve that we found earlier. Since a nonsingular affine transformation takes

parabolas to parabolas, an envelope curve that arises from evenly-spaced

nails along any two lines n1 and n2 will also lie on a parabola, tangent to

lines n1 and n2.

Thus the envelope curves in Figure 4, which might at first glance suggest
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a pair of hyperbolas, are in fact parts of four parabolas, pairwise tangent at

the ends of the nailing lines.

For a different sort of illustration, we make a short digression into game

theory. Consider a two-player, non-zero-sum game in which each player has

two pure strategies available. We can represent such a game using a table

like this one:

Player II

A B

Player I
A

B

(2, 0)

(4, 2)

(3, 6)

(0, 0)

The ordered pair (2, 0) in the upper left corner means that if Player I

chooses strategy IA and Player II chooses strategy IIA, then the payoff to

Player I is 2 and the payoff to Player II is 0.

Now suppose that the game is played repeatedly. For each play, Player I

uses some random device to select a strategy. Suppose she chooses strategy

IA with probability α and IB with probability 1 − α. Similarly, Player II

chooses strategy IIA with probability β and IIB with probability 1− β. For

this repeated play, we can calculate an expected payoff, since we know the

probability with which each of the four payoff pairs will occur. The expected

payoff is

αβ(2, 0) + α(1− β)(3, 6) + (1− α)β(4, 2) + (1− α)(1− β)(0, 0).

We factor this to get

(1− β)(α(3, 6) + (1− α)(0, 0)) + β(α(2, 0) + (1− α)(4, 2)). (10)

Since 0 ≤ β ≤ 1, expression (10) shows that the expected payoff, considered

as a point in R2, lies on the line segment connecting α(2, 0) + (1 − α)(4, 2)

with α(3, 6)+ (1−α)(0, 0). We denote this line segment `α and observe that

the set of possible expected payoffs is equal to the union of all the segments

`α, 0 ≤ α ≤ 1.
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This is the shaded region in Figure 6. The curved part of its boundary

is an envelope of exactly the kind we have been discussing, so it must lie on

a parabola.
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Figure 6: Possible expected payoffs in a non-zero-sum game

To find an explicit parametrization for this parabola, we straighten things

out with the affine map A : (x, y) 7→ (x + y− 2, x + 2y− 4). This map takes

the portion of the x-axis between x = 4 and x = 6 to the line segment

connecting (2, 0) with (4, 2) and the portion of the y-axis between y = 2 and
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y = 5 to the line segment connecting the origin with (3, 6). We take

X(α) = 4 + 2α and Y (α) = 5− 3α

and apply (7) to get the parabola parametrized by

x =
3

22
(4 + 2α)2 and y =

1

11
(5− 3α)2.

The curved part of the boundary of the shaded region in Figure 6 is the

image of this parabola under A. Its parametrization is

x =
3

11
(5α2 − 2α + 9) and y =

6

11
(4α2 − 6α + 5),

with 0 ≤ α ≤ 1.

The shaded region shows the set of expected payoffs that can arise if

each player uses a random device to choose a strategy each time the game is

played. If the game is played a large number of times and the average payoff

converges to a point outside the shaded region, then we have evidence that the

players’ random devices are not independent. In certain circumstances, this

might indicate collusion, espionage, or just poor random number generators.

Envelopes from right triangles

We now move our nailing lines back to the coordinate axes and consider some

specific non-linear spacing functions.

Constant area

Let X(α) = keα and Y (α) = ke−α for some non-zero constant k. Then the

lines `α have the property that the product of the x- and y-intercepts of each

line is equal to k2. Put another way, the `α are the hypotenuses of a family

of right triangles with constant area.

Applying formulas (5) and (6), we find that the envelope of this family

of lines is parametrized by

x =
keα

2
and y =

ke−α

2
.
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Figure 7 shows the envelope of this family of lines. This time the envelope

is a branch of a hyperbola; its equation is xy = k2/4.

k
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Figure 7: With X = keα and Y = ke−α, the envelope is the hyperbola

xy = k2/4

Constant length: the calculus of ladders

Consider a ladder of fixed length L sliding down a wall. The ladder describes

a family of lines, shown in Figure 8, for which the distance between the

x-intercept (X(α), 0) and the y-intercept (0, Y (α)) is constantly equal to L.

We want to choose X and Y so that X(α)2 + Y (α)2 = L2. An obvious

choice is

X(α) = L cos α and Y (α) = L sin α.

Formulas (5) and (6) give the envelope of this set of lines as

x = L cos3 α and y = L sin3 α. (11)
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Figure 8: The sliding ladder’s envelope lies along the astroid x2/3+y2/3 = L2/3

A Cartesian equation for this curve is x2/3 + y2/3 = L2/3; it is called an

astroid.

Applying a handful of trig identities, one can rewrite (11) as

x =
3L

4
cos α +

L

4
cos(4α) and y =

3L

4
sin α− L

4
sin(4α),

showing that the sliding-ladder envelope also happens to lie on the hypocy-

cloid traced by a point on a circle of radius L/4 rolling along the inside of a

circle of radius L.

Want to carry your ladder around a corner from one hallway into another?

If the widths of the hallways are x and y, then the astroid equation above

shows that x, y, and L have to satisfy x2/3 + y2/3 ≥ L2/3 in order for the

ladder to make it around the corner horizontally.
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Constant perimeter

Let r be a positive constant. Let

X(α) = r − α and Y (α) =
2rα

r + α

for 0 ≤ α ≤ r. It is not hard to check that

X(α) + Y (α) +
√

(X(α))2 + (Y (α))2 = 2r.

That is, the triangles with vertices at the origin, (X(α), 0), and (0, Y (α)) all

have perimeter 2r.

We use (5) and (6) to find a parametrization for the envelope of the

hypotenuses of these triangles. We get

x =
r(r − α)2

r2 + α2
and y =

2rα2

r2 + α2
.

A little algebra shows that the x and y in this parametrization satisfy (x −
r)2 + (y − r)2 = r2 for all α. This envelope is part of a circle. Thus if we

have a loop of string with length 2r and we stretch it into a triangle with

a right angle at the origin and the legs along the positive x- and y-axes,

the hypotenuse of the triangle will be tangent to the circle with center (r, r)

and radius r. Figure 9 shows the circle determined by these taut-string

triangles.

Free-form nailing

We conclude by considering a generalization in which the nailing lines become

arbitrary curves in the plane.

Let C1(α) = (X1(α), Y1(α)) and C2(α) = (X2(α), Y2(α)) be two differen-

tiable curves. For each value of α, we can parametrize the line `α determined

by C1(α) and C2(α) as

`α(t) = (1− t)(X1(α), Y1(α)) + t(X2(α), Y2(α)). (12)

14



r

r

y

x

Figure 9: Triangles with a right angle at the origin and perimeter 2r are all

tangent to the circle (x− r)2 + (y − r)2 = r2

Then for α 6= β the lines `α and `β (assuming they aren’t parallel) intersect

when t has the value

(X2(α)−X1(α))(Y1(β)− Y1(α))− (Y2(α)− Y1(α))(X1(β)−X1(α))

(X2(β)−X1(β))(Y2(α)− Y1(α))− (Y2(β)− Y1(β))(X2(α)−X1(α))
. (13)

To find the point where `α is tangent to the envelope of the family {`α}, we’ll

need to find the limit of (13) as β → α. The factors (Y1(β) − Y1(α)) and

(X1(β)−X1(α)) in the numerator of (13) can be rewritten as (β − α) times

the obvious difference quotients. With a little algebraic sleight of hand, the
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denominator or (13) can be put in the form

[(X2(β)−X2(α))− (X1(β)−X1(α))](Y2(α)− Y1(α))

−[(Y2(β)− Y2(α))− (Y1(β)− Y1(α))](X2(α)−X1(α)).

Again, the first factor in each term is (β−α) times an appropriate difference

quotient. In the limit, the difference quotients become derivatives and we

get

lim
β→α

t =
(X2 −X1)Y

′
1 − (Y2 − Y1)X

′
1

(X ′
2 −X ′

1)(Y2 − Y1)− (Y ′
2 − Y ′

1)(X2 −X1)
, (14)

where all the functions on the right are evaluated at α. We evaluate (12)

at this value of t to find a point (x, y) on the envelope. We get (evaluating

everything at α)

x =
(X1X

′
2 −X ′

1X2)(Y2 − Y1)− (X1Y
′
2 − Y ′

1X2)(X2 −X1)

(X ′
2 −X ′

1)(Y2 − Y1)− (Y ′
2 − Y ′

1)(X2 −X1)
(15)

y =
(Y1X

′
2 −X ′

1Y2)(Y2 − Y1)− (Y1Y
′
2 − Y ′

1Y2)(X2 −X1)

(X ′
2 −X ′

1)(Y2 − Y1)− (Y ′
2 − Y ′

1)(X2 −X1)
(16)

as the generalization of (5) and (6).

Here’s another route to (15) and (16) that takes a brief detour through

3-space. This may look more familiar to a differential geometer.

We put our first curve (X1(α), Y1(α)) in the plane z = 0 and our second

curve (X2(α), Y2(α)) in the plane z = 1. Then we stretch the strings from

one curve to the other through the interjacent slice of R3 to form a surface

(a ruled surface, in fact) with the parametrization

x(α, t) = X1(α) + t(X2(α)−X1(α)) (17)

y(α, t) = Y1(α) + t(Y2(α)− Y1(α)) (18)

z(α, t) = t,

with 0 ≤ t ≤ 1. If we look straight down on this surface, then the strings

we have stretched between the plane z = 0 and z = 1 look just like our line
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segments `α, and their envelope is the “visual edge” of the surface, viewed

from directly overhead.

A point on the visual edge of the surface is distinguished by the fact that

the normal vector there is horizontal. The normal vector to our surface has

a z-component given by (∂x/∂α)(∂y/∂t)− (∂y/∂α)(∂x/∂t), so a point (α, t)

maps to a point on the visual edge when

∂x

∂α
(α, t)

∂y

∂t
(α, t) =

∂y

∂α
(α, t)

∂x

∂t
(α, t). (19)

Using the parametrization (17) and (18), condition (19) becomes

X ′
1(Y2 − Y1) + t(X ′

2 −X ′
1)(Y2 − Y1)

= Y ′
1(X2 −X1) + t(Y ′

2 − Y ′
1)(X2 −X1), (20)

with everything evaluated at α.

Solving (20) for t gives us exactly the value we found in (14), and when

we substitute that value into (17) and (18), we recover the parametrization

(15) and (16).

Let’s try out formulas (15) and (16) on some simple parametrized curves:

two circles centered at the origin.

Let X1(α) = 2 sin α, Y1(α) = 2 cos α, X2(α) = − sin α, and Y2(α) =

cos α. Two points determine each of our lines `α. The first moves clockwise

around a circle of radius 2, starting at the 12 o’clock position; the second

moves counterclockwise around a circle of radius 1, also starting at 12 o’clock.

Unlike the hands of an actual clock, our two points move at the same angular

rate.

Applying (15) and (16) to these two circles, we get an envelope curve

parametrized by

x = −4 sin3 α and y =
4

3
cos3 α. (21)

The obvious quantity to compute here is x2/3 + (3y)2/3, and we find that the

points along (21) satisfy

x
2
3 + (3y)

2
3 = 4

2
3 .
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Our envelope is another hypoellipse. In fact, since the exponent is 2/3, we

might also describe this envelope as a sort of squashed astroid.

y

x
4

Figure 10: The lines determined by one point moving clockwise at radius 2

and another moving counterclockwise at radius 1 are all tangent to a squashed

astroid

Figure 10 shows the two paths, the envelope, and the lines `α that

generate just the first quarter of the envelope. Since the points of tangency

along most of this envelope lie outside the segments “between the nails,” a

traditional string art piece using this recipe would show only a small part of

the envelope. To get the whole picture, as Figure 10 suggests, we might

want to try a kind of augmented string art, in which we stretch the lines all

the way to the frame, and anchor them there.

Other envelopes that arise from points moving around circles will be found

in [2] and [3].
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