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1 Introduction – Graph spectra

Let G = (V, E) be a finite, undirected graph with vertex set {v1, v2, . . . , vN}
and edge set {e1, e2, . . . , eM}. We allow G to have loops (edges connecting
a vertex to itself) and parallel edges (two or more edges sharing the same
endpoints). The adjacency matrix of G is the N -by-N integer matrix

A = (aij)

in which aij is equal to the number of edges joining vertex vi to vertex vj (if
i 6= j), and aii is equal to twice the number of loops at the vertex vi.

We remark that A depends on the ordering of the vertices in the set V , but
that a reordering of the vertices changes A only by permuting its rows and
columns, so that any adjacency matrix for G is similar to A. Thus the set of
eigenvalues of A, which we will call the spectrum of G, is independent of the
ordering in the set V , and is completely determined by the graph structure
of G.

The graph structure of G, on the other hand, is not in general determined by
the spectrum of G. We have numerous examples of pairs of graphs which are
isospectral but not isomorphic. (See [3] for several of them.) In this paper,
we discuss a technique, called Seidel switching, for generating such pairs.

Seidel switching was introduced in [6], a study of point sets in elliptic spaces.
In [3], there appears a very short algebraic proof of why graphs constructed
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via the Seidel technique are isospectral. Another algebraic proof is found in
[5]. Here we offer a (somewhat longer) proof of the same fact, with a much
more geometric flavor. This proof may fall into the category of mathematical
folklore; it was shown to us by Robert Brooks ([1]).

2 Walks and the length spectrum

As before, let G = (V, E) be an undirected graph, and let A be an adjacency
matrix of G. Let λ1, λ2, . . . , λN be the eigenvalues of A. We remark that
since A is symmetric, these eigenvalues are all guaranteed to be real.

The most basic connection between the spectrum of A and the geometric
structure of G involves counting walks in G. In order to define and study
walks, it will be convenient to view G as a directed graph. We do so by
treating each undirected edge e joining vertices v and w as two directed edges:
ε1 leading from v to w, and ε2 leading from w to v. Following this convention,
an undirected loop at a vertex v in G will be treated as two directed loops at
v. (We may think of these as leading around the undirected loop in opposite
directions.)

Undirected Directed

Figure 1: Directed version of an undirected graph

In Figure 1, we show an undirected graph beside a version of the same graph
showing all the edges as pairs of directed edges.

For the rest of this paper, all of our graphs will be undirected, but the edge
set E of each graph will most often be treated as a set of directed edges εi,
with the understanding that for each εi in E, there is some opposite edge εj
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also in E. We will use the notations Init(ε) and Term(ε) for the initial and
terminal vertices, respectively, of the directed edge ε.

Let G = (V, E) be a graph, and k a non-negative integer. A k-walk from
vertex v to vertex w in G is a sequence of directed edges

ε1 ε2 ε3 · · · εk

in which Init(ε1) = v, Term(εk) = w, and Init(εi+1) = Term(εi) for i =
1, . . . , k − 1.

For a matrix B, let [B]ij denote the entry in the ith row and jth column of
B. The following is well-known (see, for example, [4], p. 653).

Theorem 1 Let A = (aij) be the adjacency matrix of an undirected graph
G. For each integer k ≥ 0, the number of k-walks from vi to vj in Γ is equal
to

[Ak]ij,

the ijth entry of the kth power of A.

A closed k-walk at v in G is a k-walk from v to v. It follows immediately
from Theorem 1 that the number of closed k-walks at a vertex vi in G is
equal to [Ak]ii, where A is the adjacency matrix of G. Taking the sum of
these diagonal entries, we get the following.

Theorem 2 Let G be a graph with adjacency matrix A, and let λ1, λ2, . . . , λN

be the eigenvalues of A. For each integer k ≥ 0, the total number of closed
k-walks in G is equal to

λk
1 + λk

2 + · · ·+ λk
N .

Proof The total number of closed k-walks in G is equal to the sum over all
the vertices vi in G of the number of closed k-walks at vi. By the observation
above, this is equal to

N∑

i=1

[Ak]ii = Tr(Ak).
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Now if λ is an eigenvalue of A, then λk is an eigenvalue of Ak (with the same
eigenvector), so the eigenvalues of Ak are

λk
1, λk

2, . . . , λk
N ,

and the trace of Ak is

λk
1 + λk

2 + · · ·+ λk
N ,

as required.

For each integer k ≥ 0, let `k(G) denote the number of closed k-walks in the
graph G. The length spectrum of G is the sequence

`0(G), `1(G), `2(G), . . . .

Theorem 2 says that

`k(G) =
N∑

i=1

λk
i ,

where the numbers λi are the eigenvalues of A, and thus that the length
spectrum of G is determined by the spectrum of G.

It is also true that the spectrum of G is determined by the length spectrum
of G. In fact, the spectrum of G, the complete set of eigenvalues of A, is
determined by the numbers

`1(G), `2(G), . . . , `N(G)

through a set of relations called Newton’s formulas. Briefly (see [2]), given
complex numbers r1, r2, . . . , rn, the polynomial

p(x) = (x− r1)(x− r2) · · · (x− rn)

may be expanded as

p(x) = σ0x
n − σ1x

n−1 + · · ·+ (−1)iσix
n−i + · · ·+ (−1)nσn,

where σi is the ith-degree elementary symmetric function in r1, r2, . . . , rn, and
we have set σ0 = 1 for convenience. For each non-negative integer i let

πi = ri
1 + ri

2 + · · ·+ ri
n
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be the ith moment of the roots of p(x). Then for k between 0 and n (inclusive),
we have

σk =
1

k

[
k∑

i=1

(−1)i+1σk−iπi

]
.

Applying this relation recursively, we can recover σ1 through σn (and thus the
polynomial p(x)) from the numbers π1 through πn. In the present instance,
this tells us that we can reconstruct the characteristic polynomial of an N -
vertex graph G from the numbers `1(G), `2(G), . . . , `N(G).

If two graphs have a common length spectrum, they are said to be length
isospectral. By the argument above, we have

Corollary 3 Two graphs are isospectral if and only if they are length isospec-
tral.

3 Seidel switching

Here is the recipe for producing a pair of isospectral graphs using Seidel
switching.

We begin with two graphs G1 = (V1, E1) and G2 = (V2, E2). The graph G2

must contain an even number of vertices and must be regular (that is, every
vertex must have the same number of edges incident upon it). There are no
restrictions on G1.

We introduce a set E of (undirected) edges which join each vertex in G1 to
exactly half the vertices in G2. We may choose the edges in E in any way
we like, as long as there are exactly |V2|

2
edges in E incident on each vertex

in G1, and the other ends of these edges are incident on some |V2|
2

different
vertices in G2.

We next form the set EC of undirected edges, which is determined by E as
follows: for each vertex v in G1 and each vertex w in G2, there is an edge
between v and w in EC if and only if there is no edge between v and w in E .
That is, the edges in EC connect each vertex in G1 to the “other half” of the
vertices in G2.
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We now form two graphs,

ΓA = (V1 ∪ V2, E1 ∪ E2 ∪ E) (1)

and

ΓB = (V1 ∪ V2, E1 ∪ E2 ∪ EC). (2)

In the next section, we will prove that ΓA and ΓB thus formed are always
length isospectral, and thus isospectral.

First, we illustrate this procedure with an example. We begin with the two
graphs G1 and G2 in Figure 2. Note that G2 has an even number of vertices
and is 2-regular.

G1 G2

Figure 2: Graphs G1 and G2 for the Seidel construction

In Figure 3, we introduce the set E , shown with dotted lines, connecting each
vertex of G1 to two vertices of G2. The set EC is shown with shaded lines.
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Figure 3: The graphs G1 and G2, with E and EC

The graphs ΓA = (V1 ∪V2, E1 ∪E2 ∪E) and ΓB = (V1 ∪V2, E1 ∪E2 ∪EC) are
shown in Figures 4 and 5 respectively.

Figure 4: The graph ΓA

Figure 5: The graph ΓB

The adjacency matrices of ΓA and ΓB share the characteristic polynomial

X6 − 4X5 − 3X4 + 18X3 + 4X2 − 16X + 4,

so the graphs are indeed isospectral.
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The construction of the isospectral pair ΓA and ΓB (lines (1) and (2)) is
determined once G1, G2, and E have been specified, so we will refer to the
entire construction above (involving G1, G2, E , EC , ΓA, and ΓB) as the Seidel
pair (G1, G2, E). We sympathize with the reader who finds it disturbing to
have a “pair” with three elements.

4 A combinatorial proof

Suppose we are given a Seidel pair (G1, G2, E).

Given vertices v and w in V1 (the vertex set of G1) and a non-negative integer
k, we define a (v, w, k) A-patch to be a sequence of (directed) edges

ε0 ε1 ε2 · · · εk εk+1

in which

1. ε0 ∈ E and εk+1 ∈ E
2. Init(ε0) = v and Term(εk+1) = w
3. εi ∈ E2 for i = 1, . . . , k
4. Term(εi) = Init(εi+1) for i = 0, . . . , k.

That is, a (v, w, k) A-patch is a walk in ΓA from v to w in which the first and
last edges, and only the first and last edges, are in E . Similarly, a (v, w, k)
B-patch is a walk from v to w in ΓB in which just the first and last edges
are in EC . Formally, a (v, w, k) B-patch is a sequence of directed edges

ε0 ε1 ε2 · · · εk εk+1

satisfying

1. ε0 ∈ EC and εk+1 ∈ EC

2. Init(ε0) = v and Term(εk+1) = w
3. εi ∈ E2 for i = 1, . . . , k
4. Term(εi) = Init(εi+1) for i = 0, . . . , k.

The core of the combinatorial proof of the validity of Seidel switching is the
following lemma about A-patches and B-patches.
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Lemma 4 Given a Seidel pair (G1, G2, E), for each pair v and w of vertices
in V1 and each non-negative integer k, the number of (v, w, k) A-patches is
equal to the number of (v, w, k) B-patches.

In the course of proving Lemma 4, we will need the following simple result.

Lemma 5 Let G be an r-regular graph. Given a vertex v in G and a non-
negative integer k, the number of k-walks in G which begin at v is rk. Also,
the number of k-walks in G which end at v is rk.

Proof The number of 0-walks beginning at v is certainly 1, and the number
of 1-walks beginning at v is r, because there are r edges originating at v.
Suppose we have a (k − 1)-walk beginning at v and ending at some vertex
w. We can extend this to a k-walk in exactly r ways, since there are r edges
originating at w. Thus the number of k-walks beginning at v is r times the
number of (k − 1)-walks beginning at v. By induction, this number is

r · rk−1 = rk.

The proof of the second part of the lemma is entirely analogous, and we omit
it.

We are now ready to undertake the proof of Lemma 4.

Proof Fix an integer k ≥ 0 and vertices v and w in V1. The recipe for a
Seidel pair guarantees that each vertex in V2 is joined to v by an edge in E
or by an edge in EC , but not both. That is, each vertex in V2 is adjacent to
v in ΓA or in ΓB, but not both. Thus we can partition the vertices in V2 as

V2 = V(v,A) ∪ V(v,B)

where V(v,A) is the set of vertices in V2 which are adjacent to v in ΓA and
V(v,B) is the set of those which are adjacent to v in ΓB. For the same reason,
we have a second partition

V2 = V(w,A) ∪ V(w,B)

where the vertices in V(w,A) are adjacent to w in ΓA and those in V(w,B) are
adjacent to w in ΓB.
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Furthermore, since the edges in E join each of v and w to exactly half of the
vertices in V2, we know that

|V(v,A)| = |V(v,B)| = |V(w,A)| = |V(w,B)| = |V2|
2

.

We now partition all the k-walks in G2 into four sets,

WAA ∪WAB ∪WBA ∪WBB

according to where their beginning and ending vertices fall. Consider the
table

Location of
ending vertex

Location of
starting vertex
V(v,A) V(v,B)

V(w,A) WAA WAB

V(w,B) WBA WBB

The set WAA contains all the k-walks in G2 which begin at a vertex in V(v,A)

and end at a vertex in V(w,A). The set WAB contains all the k-walks in G2

which begin at a vertex in V(v,A) and end at a vertex in V(w,B). Since

V(w,A) ∪ V(w,B)

is a partition of V2, the set WAA∪WAB comprises all the k-walks in G2 which
begin at a vertex in V(v,A) and end anywhere in V2. Since G2 is r-regular and

there are exactly |V2|
2

vertices in V(v,A), we apply Lemma 5 to get

|WAA|+ |WAB| = |V(v,A)|rk =
|V2|
2

rk. (3)

Similarly, WAB ∪WBB comprises all the k-walks in G2 which begin anywhere
in V2 and end at a vertex in V(w,B), and so

|WAB|+ |WBB| = |V(w,B)|rk =
|V2|
2

rk. (4)
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From (3) and (4), we get

|WAA|+ |WAB| = |WAB|+ |WBB|,
from which it follows that

|WAA| = |WBB|.

To complete the proof, we observe that each k-walk in WAA corresponds
to exactly one (v, w, k) A-patch, and each k-walk in WBB corresponds to
exactly one (v, w, k) B-patch. Explicitly, the correspondence (in the WAA

case) associates the k-walk

ε1 ε2 · · · εk

with the patch

ε0 ε1 ε2 · · · εk εk+1,

where ε0 is the edge in E joining v to the initial vertex of ε1 (suitably directed)
and εk+1 is the edge in E joining the terminal vertex of εk to w (again, suitably
directed). The correspondence in the WBB case is constructed analogously.

Since the sets WAA and WBB have the same cardinality, we have the following.

Corollary 6 Let v and w be vertices in V1 and k a non-negative integer. Let
PA

(v,w,k) be the set of (v, w, k) A-patches from v to w and PB
(v,w,k) be the set of

(v, w, k) B-patches from v to w. Then there is a one-to-one correspondence

PA
(v,w,k) ↔ PB

(v,w,k).

We are now ready to show that the graphs ΓA and ΓB in a Seidel pair are
length isospectral.

Theorem 7 Let k be a non-negative integer and (G1, G2, E) a Seidel pair.
There is a one-to-one correspondence between the set of all closed k-walks in
ΓA and the set of all closed k-walks in ΓB.
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Proof Every closed k-walk W in ΓA is of one of three types:

Type I: W is contained in G1

Type II: W is contained in G2

Type III: W contains some edges in E .

Similarly, if Z is a closed k-walk in ΓB, then Z is of one of these three types:

Type I′: Z is contained in G1

Type II′: Z is contained in G2

Type III′: Z contains some edges in EC .

Given a closed k-walk W in ΓA, if W is of Type I or Type II, then W is in
fact a closed k-walk in ΓB (of Type I′ or Type II′), so we may associate such
a W to a corresponding closed k-walk in ΓB using the identity mapping.

To complete the proof, we need to construct a bijection from the set of
Type III closed k-walks in ΓA to the set of Type III′ closed k-walks in ΓB.
Let

W = ε1 ε2 · · · εk

be a closed k-walk of Type III in ΓA. Because W is closed and contains some
edge in E , it must contain some first edge εm which is in E and leads from a
V1 vertex to a V2 vertex. We permute the edges in W cyclically so that εm

comes first, and consider the resulting walk,

W = εm εm+1 εm+2 · · · εm+k−1

where the subscripts are read modulo k. This is a closed k-walk, beginning
and ending at some vertex v = Init(εm) in V1. As such, it may be viewed as
a sequence

W = P1 W1 P2 W2 · · · Pj Wj (5)

where each Pi is a (vi, wi, li) A-patch and each Wi is a walk, contained entirely
in G1, from wi to vi+1, reading these subscripts modulo j.
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By Corollary 6, for each patch Pi, there exists a corresponding (vi, wi, li) B-
patch, which we will denote P ′

i . We replace each Pi in W by its corresponding
P ′

i to get a new walk

W
′

= P ′
1 W1 P ′

2 W2 · · · P ′
j Wj.

This is again a closed k-walk at v = Init(εm), but each edge εh of W that
was contained in E has been replaced by an edge ε′h in EC . Thus W

′
is a

closed k-walk in ΓB. To complete the mapping, we write

W
′

= ε′m ε′m+1 ε′m+2 · · · ε′m+k−1

where each ε′h is either equal to εh (if εh was in some Wi in (5)) or is the edge
corresponding to εh in some P ′

i . Finally, we apply another cyclic permutation
to the edges in W

′
to recover

W ′ = ε′1 ε′2 · · · ε′k,

which is indeed a Type III′ closed k-walk in ΓB.

To invert this mapping W 7→ W ′, we proceed as follows. A closed k-walk
W ′ in ΓB contains some first edge ε′m in EC which leads from V1 to V2. We
apply a cyclic permutation to the edges in W ′ so that ε′m comes first, and
then replace each (vi, wi, li) B-patch in the resulting closed k-walk with the
corresponding (vi, wi, li) A-patch, whose existence is guaranteed by Corollary
6. Finally we undo our cyclic permutation so that the image of ε′1 comes first.

To see that this procedure really does invert our original mapping, we need
only observe that the first edge in W leading from V1 to V2 is in exactly the
same position as the first edge in W ′ leading from V1 to V2 and that replacing
a B-patch with an A-patch is the inverse operation to replacing an A-patch
with a B-patch.

5 Seidel switching and regularity

The spectrum of a graph determines some of the graph’s geometry, but the
existence of Seidel pairs (and the ease with which they can be constructed)
shows that the spectrum of a graph is far from determining its isomorphism
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type. If we introduce a new restriction and consider only regular graphs,
then the spectrum seems to become somewhat stronger, in the sense that
isospectral pairs of regular graphs appear to be rarer than isospectral pairs
among non-regular graphs.

Thus it is of interest to construct Seidel pairs of regular graphs. The following
theorem gives some necessary conditions for a Seidel pair to be regular.

Theorem 8 Suppose (G1, G2, E) is a Seidel pair, and that ΓA is q-regular.
Then

1. |V1| is even.

2. G1 is regular.

3.
|V1|
2

+ r =
|V2|
2

+ s = q, where r is the valency of G2 and s is the va-

lency of G1.

4. ΓB is q-regular.

Proof G2 is r-regular to begin with, so in ΓA, each vertex in V2 must be an
endpoint of the same number of edges in E , and this number must be |E|

|V2| .
Now by the Seidel recipe, we know that

|E| =
|V1| · |V2|

2
,

so the number of edges in E incident on each vertex in G2 must be |V1|
2

,
showing that |V1| is even, and that

q = r +
|V1|
2

. (6)

Let v be a vertex in V1, and let s be the valency of v in G1. In the graph ΓA,
there are |V2|

2
new edges incident on v, so the valency of v as a vertex in ΓA

is

s +
|V2|
2

.
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But ΓA is q-regular, so we get

s = q − |V2|
2

,

independent of the choice of v. Thus G1 is s regular, and

q = s +
|V2|
2

. (7)

The third assertion has been proved in lines (6) and (7).

Since EC contains edges joining each vertex in V1 to exactly half the vertices
in V2, we know that the valency of each vertex in V1 in the graph ΓB is

s +
|V2|
2

= q.

Meanwhile, if v is a vertex in V2, then there are exactly |V1|
2

vertices in V1

which are joined to v by edges in E . This means that there are |V1|
2

vertices
in V1 which are not joined to v by edges in E , it is exactly this set of vertices
which must be joined to v by edges in EC . Thus the valency of v in the graph
ΓB is

r +
|V1|
2

= q.

We note that conditions 1, 2, and 3 are not sufficient for the regularity of
ΓA and ΓB, but they do tell us where to look for examples of regular Seidel
pairs.

6 Small, regular Seidel pairs

In particular, we can use Theorem 8 to look for the smallest examples of
regular Seidel pairs in which ΓA and ΓB are not isomorphic. We have

Corollary 9 If (G1, G2, E) is a Seidel pair in which either G1 or G2 contains
only two vertices, then ΓA is isomorphic to ΓB.
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Proof Suppose G1 contains only two vertices v1 and v2. Since G1 is regular,
there exists an automorphism of G1 which interchanges v1 and v2. Because
E joins v1 to half the vertices in G2 and v2 to the other half, a vertex w in
G2 is adjacent to v1 in ΓA if and only if w is not adjacent to v2 in ΓA. But
w is not adjacent to v2 in ΓA if and only if w is adjacent to v2 in ΓB. Thus

w ∼ v1 in ΓA ⇔ w ∼ v2 in ΓB.

This, together with the fact that interchanging v1 and v2 is an automorphism
of G1, implies that interchanging v1 and v2 is an isomorphism taking ΓA to
ΓB.

An analogous argument applies if G2 has only two vertices.

With a little more work, it can be shown that if |V1| = |V2| = 4 and G1

is 1-regular, then the graphs ΓA and ΓB in any Seidel pair (G1, G2, E) are
isomorphic. (The idea is that G1 must be the union of two K2s, and the
automorphism group of this graph is large enough to induce an isomorphism
between ΓA and ΓB for any choice of E .)

There are at least three regular Seidel pairs (with ΓA not isomorphic to ΓB)
in which |V1| = |V2| = 4 and G1 and G2 are 2-regular. We present one of
them, identified in [1]. Figure 6 shows the four-vertex, 2-regular graphs G1

(on the left) and G2 (on the right). The edges in E are shown in grey.
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Figure 6: G1, E , and G2

The graphs ΓA and ΓB in this Seidel pair (shown in Figure 7) are pleasingly
symmetric and clearly non-isomorphic.

ΓA ΓB

Figure 7: A 4-regular Seidel pair with |V1| = |V2| = 4
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Looking further, Theorem 8 and Corollary 9 do not rule out the possibility
of an interesting regular Seidel pair with |V1| = 4, |V2| = 6, r = 1, and s = 2.
In fact, such a pair exists, and seems to be the smallest example of a Seidel
pair of regular graphs containing no loops or parallel edges. We let G1 be
the union of two K2s and G2 be a six-vertex cycle graph. Figure 8 shows G1,
G2 and the edges in E .

Figure 8: G1, E , and G2

Again, the graphs ΓA and ΓB arising from this pair exhibit pleasing symme-
tries. We show them in Figures 9 and 10. The circled vertices in each of
these figures are to be identified.

Figure 9: ΓA of a 4-regular, ten-vertex Seidel pair
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Figure 10: ΓB of a 4-regular, ten-vertex Seidel pair
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