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1 Introduction

From two recent introductory books on knot theory ([1] and [7]), we learned
about using labellings of knot diagrams to distinguish knots. For each prime
p ≥ 3, a diagram of a knot K has a valid mod-p labelling if and only if every
diagram representing the knot type of K has a valid mod-p labelling. Writing
down the first few examples that come to mind shows quickly and easily that
the trefoil and the figure-eight knots are distinct from one another, and that
neither of them is equivalent to the trivial knot. (These facts are in close
agreement with all of our experimental data.)

We then wondered if there were any knots other than the trivial knot which
fail to have mod-p labellings for any prime p. We learned somewhat later that
knot theorists have long known that there are infinitely many such knots. In
[4], it is shown that a diagram of a knot K has a mod-p labelling if and only
if ∆K(−1) is divisible by p, where ∆K(t) is the Alexander polynomial of K.
When K is an odd torus knot, its Alexander polynomial ∆K(t) is readily
computed (see [6], p. 265), and one finds that ∆K(−1) = 1 for every such
knot. It can be shown by other methods (see [10], p. 53, for example) that
there are infinitely many distinct odd torus knots, so we get an infinite family
of knots, none of which has a mod-p labelling for any prime p.

This approach provides a swift and decisive answer to our question, but relies
on rather advanced techniques. Since we are far from being specialists in the
field of knot theory, we preferred to investigate mod-p labellings from a more
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elementary point of view. In doing so, we found that the study of knots
provides some nice, hand-on applications of familiar techniques and results
from group presentations, group representations, and number theory, as well
as basic algebraic topology. Once we understood the algebraic significance
of knot labellings (Lemma 5), we were able to produce a very accessible
demonstration that the odd torus knots have no mod-p labellings.

2 Definitions

A knot is a mathematical model of a piece of rope which has had a knot
tied in it and then had its ends spliced together. Thus a knot is basically an
embedding of a circle in R3. Since a physical piece of rope has some positive
thickness, a physical knot can’t be pulled infinitely tight. This property is
usually included in the definition of a mathematical knot by requiring that
the embedded circle not come “arbitrarily close to itself.” Embeddings of
the circle in R3 which satisfy a condition of this kind are called tame knots.
Knots that are not tame are called wild. Wild knots are not good models
of everyday physical knots, and it seems they are not studied very much. In
this article, when we say “knot,” we will mean “tame knot.”

We should consider two knots as equivalent if the ropes they model can be
pushed around in R3 so that they look the same, at least up to scaling.
Pushing a rope around in space is modelled by the mathematical notion
of an ambient isotopy, which is a family of homeomorphisms ft : R3 →
R3 where the “time” variable t runs through the interval [0, 1]. The initial
homeomorphism f0 is the identity, and the family ft, considered as a function
from R3 × [0, 1] to R3, must be continuous. An ambient isotopy is like a
movie: for each t ∈ [0, 1], the map ft corresponds to a single frame showing
the position of our rope at time t. If K ⊆ R3 is a knot and ft is an ambient
isotopy such that ft(K) is a knot for each t ∈ [0, 1] (that is, the rope doesn’t
pass through itself at any time during the movie), then the knot f1(K) is
isotopy equivalent to K. It is intuitively clear (and easy enough to check
formally) that isotopy equivalence is indeed an equivalence relation. When
two knots are isotopy equivalent, we will say that they are of the same type.

To study knots, we draw pictures of them. A knot diagram of a knot K
is a projection K onto a plane, with gaps in the curve to indicate where
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parts of K cross under other parts of K. We also insist that each point in
the projection be the image of no more than two points in K, and that all
intersections in the diagram be transverse.

A knot invariant is some quantity we assign to a knot K that depends only
on the knot type of K, and not on the particular representative we happen
to be looking at. Knot invariants that we can read off a knot diagram are
particularly useful, because they can tell us immediately that two diagrams
represent different knot types.

3 Knot labellings

A strand in a knot diagram is an arc between one undercrossing and the
next. If a knot diagram has n crossings, then it has n strands. A labelling of
a knot diagram is a mapping from the strands of the diagram into some set
of symbols. If we number the strands (in some arbitrary way) as 1, 2, . . . , n,
then we can write down any labelling as an n-tuple (a1, a2, . . . , an), indicating
that the symbol ai is assigned to strand i.

Let p be a prime. A mod-p labelling of a knot diagram is a labelling using
the symbols {0, 1, . . . , p−1}. A mod-p labelling (a1, a2, . . . , an) is called valid
if it satisfies the two conditions

MPL1 At least two different labels are used.

MPL2 At each crossing the relation aj +ak−2ai ≡ 0 (mod p) holds, where
i is the overcrossing strand, and j and k are the strands that form
the undercrossing.

Claim 1 The existence of a valid mod-p labelling is a knot invariant. That
is, one diagram of a knot K has a valid mod-p labelling if and only if every
diagram of every knot of the same type as K has a valid mod-p labelling.

This is shown in [7] by combinatorial methods. We will outline a slightly dif-
ferent proof (also suggested in [7]) later on, but for now, let’s accept Claim 1
and try it out on some familiar knots. In Figure 1, it is easy to check that
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the mod-3 labelling of the trefoil and the mod-5 labelling of the figure-eight
knot are both valid. It is just a shade more difficult to check that the trefoil
diagram can have no valid mod-5 labelling. (Hint: If (a1, a2, a3) is a valid
mod-p labelling, then so is (a1 + c, a2 + c, a3 + c), reading the entries mod
p, for any constant c.) By Claim 1, the two diagrams in Figure 1 actually
represent distinct knots. Furthermore, since the trivial knot (that is, an un-
knotted loop of rope) has a diagram with only one strand, and no labelling
of such a diagram can satisfy MPL1, the trivial knot has no mod-p labelling
for any p. Thus neither the trefoil nor the figure-eight knot is equivalent to
the trivial knot.

1 0

2

1 4 0

3

Figure 1: A valid mod-3 labelling of a trefoil diagram (left) and a valid
mod-5 labelling of a figure-eight diagram (right).

For our next labelling, it will be convenient to give our knot diagram an
orientation, at least temporarily. This is easy to do. We orient a knot
by choosing a direction in which to traverse it. The knot orientation is
inherited by the diagram, and may be indicated by drawing arrowheads along
the strands. A crossing in an oriented knot diagram is right-handed if an
observer walking along the overcrossing strand in the preferred direction sees
the undercrossing traffic approaching from the right. Otherwise the crossing
is left-handed. (See figure 2.) The handedness of a crossing does not depend
on the orientation chosen for the knot; reversing all the arrowheads takes a
right-handed crossing to another right-handed crossing.

4



k i
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Figure 2: A right-handed crossing (left) and a left-handed crossing (right).

Let H be a group and K be a knot. If we have an oriented diagram of
K with n strands numbered 1, 2, . . . , n, we can form an H-labelling of the
diagram by assigning a group element hi to each strand i. An H-labelling
(h1, h2, . . . , hn) is called valid if the following two conditions are satisfied.

GL1 The set {h1, h2, . . . , hn} is a generating set for H.

GL2 At each right-handed crossing, the relation hihkh
−1
i = hj holds, where

i is the overcrossing strand, j is the “incoming” undercrossing strand,
and k is the “outgoing” undercrossing strand. At each left-handed
crossing, with i, j, and k in the same roles, the relation hihjh

−1
i = hk

holds.

Since GL2 refers to “incoming” and “outgoing” strands, it appears that the
validity of an H-labelling depends on the orientation we choose for our knot
diagram. Although this is so, the existence of a valid H-labelling is inde-
pendent of our choice of orientation. This is because (h1, h2, . . . , hn) is a
valid H-labelling of a diagram M if and only if (h−1

1 , h−1
2 , . . . , h−1

n ) is a valid
H-labelling of the diagram M ′ obtained from M by reversing its orientation.

As we did with mod-p labellings, we now assert that group labellings are
useful, but we defer giving the proof until later on.

Claim 2 The existence of a valid H-labelling is a knot invariant.

As we travel around a knot diagram with a valid H-labelling, the condition
GL2 tells us that the label on each new strand we encounter (beginning at
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some undercrossing) is conjugate to the label on the preceding strand. It
follows that all the labels in a valid H-labelling of a knot diagram must
belong to a single conjugacy class in H. Since, by GL1, these labels must
generate H, any group we use to label a knot diagram must be generated by
the elements of a single conjugacy class. In particular, no non-trivial abelian
group can be used in a valid group labelling of a knot.

When we turn our attention to the dihedral groups, though, we find just
what we’re looking for. Let p ≥ 3 be a prime, and let Dp denote the dihedral
group of order 2p, which we present as

Dp =
〈
r, s : rp = s2 = 1, rs = sr−1

〉
.

We list all the elements of Dp as

{1, r, r2, . . . , rp−1, s, sr, sr2, . . . srp−1},
and consider this group’s conjugacy classes. Each element rk is conjugate
only to its inverse, but the conjugacy class containing s also contains srk for

each k. (For even k, conjugate s by r
k
2 ; for odd k, conjugate s by r

p−k
2 .)

Can elements of the conjugacy class of s generate Dp? Since each srk has
order 2, we will need at least two such elements to have any hope of generating
Dp. So consider srk and srl with k 6≡ l (mod p), and let H be the subgroup
of Dp generated by these two elements. Then H contains srksrl = rl−k. Since
p is prime, l− k is relatively prime to p, and elementary number theory tells
us that some power of rl−k is equal to r in Dp. So H contains r. Since H
also contains srk, it follows that H contains s. Thus H = Dp.

We summarize this discussion as a lemma.

Lemma 3 Let p ≥ 3 be a prime. If a set of elements from a single conjugacy
class of Dp generates Dp, the elements must be of the form srk. Furthermore,
any two distinct elements of the form srk generate Dp.

The condition GL1 says that a valid Dp-labelling must use only labels of the
form srk, and it must use at least two of them. This echo of the condition
MPL1 suggests that mod-p labellings and Dp-labellings are somehow related.
In fact, a closer look shows us that mod-p labellings and Dp-labellings are
actually identical.
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Lemma 4 Let p ≥ 3 be a prime and M a knot diagram. Then M has a
valid mod-p labelling if and only if M has a valid Dp-labelling.

Proof Suppose M has n strands. By the discussion above, any valid Dp-
labelling of M must be of the form (sra1 , sra2 , . . . , sran), where each ai is in
the set {0, 1, . . . , p− 1}. We claim that the Dp-labelling (sra1 , sra2 , . . . , sran)
is valid if and only if the mod-p labelling (a1, a2, . . . , an) is valid.

First, GL1 and MPL1 are equivalent in this situation, because each one
simply requires the appearance of two distinct ai.

To see that GL2 is equivalent to MPL2, consider a right-handed crossing
with the usual cast of characters: i is the overcrossing strand and j and k
are, respectively, the incoming and outgoing undercrossing strands. In the
Dp labelling, the condition GL2 at this crossing says that

1 = (srai)(srak)(srai)−1(sraj)−1

= raj+ak−2ai ,

that is, aj + ak − 2ai is a multiple of p. But this is exactly condition MPL2.

Interchanging all the j’s and k’s in the previous paragraph shows that GL2
and MPL2 are equivalent at left-handed crossings, as well. ¤

We remark that, although we still have not proved either Claim 1 or Claim 2,
Lemma 4 at least shows that Claim 2 implies Claim 1.

4 Knot groups

The topology of a knot isn’t useful for distinguishing one knot from another,
since every knot is homeomorphic to a circle. Knot theorists study instead
the topology of the complement of a knot, and in particular the fundamental
group π1(R3 −K), which is called the knot group of K. We will denote this
group G(K). Since the topology of R3−K is preserved by ambient isotopies,
any quantity depending on G(K) is automatically a knot invariant.

An element of G(K) is represented by an oriented closed path which begins
at some fixed base point x0 /∈ K, winds through the space around K and
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then returns to x0. The composition operation in this group corresponds to
concatenation of paths. The identity element is represented by a path that
never leaves x0, or by a loop at x0 which never gets tangled up with any part
of K, so that it can be shrunk back to x0 without getting caught anywhere.
The inverse of the group element represented by a path σ is represented by
the same path traced in the opposite direction.

In Figure 3, for example, if path σ1 represents a group element g, then path
σ2 represents g−2. Path σ3 represents the identity, since it can be pulled clear
of the knot.

σ1

σ2

σ3

x0

Figure 3: Three paths in the complement of a figure-eight knot.

Given an oriented diagram of a knot K, there is a nice recipe for writing down
a group presentation for G(K). We first establish a base point x0 somewhere
off to the side of our knot diagram. Then for each strand i in the diagram,
we write down a group element gi, represented by a closed path which begins
at x0, crosses under strand i from, say, right to left, then crosses over strand
i and returns to x0 without getting tangled up anywhere else in the knot.
(See Figure 4.) It is not too surprising that the elements gi actually generate
G(K). This is just saying that any x0-based loop through the space around
K can be deformed into a sequence of loops each of which leaves x0, circles
one strand of K (in one direction or the other), and then returns to x0.
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3

2

1

g3

g2

g1 x0

Figure 4: Representatives of the generators g1, g2, and g3 of the knot group
of a trefoil knot.

For each crossing in the knot diagram, we have a relation among the gener-
ators gi. At a right-handed crossing where i is the overcrossing strand and
j and k are the incoming and outgoing undercrossing strands, a path which
passes underneath all three of these strands and circles the crossing once (see
Figure 5) represents the group element gigkg

−1
i g−1

j , since it can be deformed
into four paths representing these generators. On the other hand, since this
path can be pulled clear of K, it represents the identity in G(K), so we get
the relation gigkg

−1
i g−1

j = 1. Hold Figure 5 up to a mirror to see that the

corresponding relation at a left-handed crossing is g−1
i g−1

k gigj = 1.

We now have a set of generators (one for each strand) and a set of relations
(one for each crossing). The wonderfully useful result is that this set of
relations is sufficient to define G(K). The recipe we just outlined is called
the Wirtinger presentation of G(K). A proof that this presentation actually
does describe the knot group of K is found in [10].
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k i

j

x0

Figure 5: At a right-handed crossing, the generators of a knot group
satisfy the relation gigkg

−1
i g−1

j = 1.

5 Knot groups and knot labellings

Using the Wirtinger presentation, we can establish the important connection
between knot groups and group labellings of knots. This connection will put
the knot labellings, which we described in a combinatorial way, on a more
topological footing. It will also allow us to use algebraic techniques to study
the labellings themselves, and in certain cases, to show that valid labellings
cannot be constructed.

Lemma 5 Let K be a knot and H a group.

1. If any oriented diagram of K has a valid H-labelling, then there exists
a surjective homomorphism from G(K) to H.

2. If there exists a surjective homomorphism from G(K) to H, then every
oriented diagram of K has a valid H-labelling.

We sketch the proof.

For the first statement, suppose we have a diagram of K with a valid H-
labelling. Then for each i, strand i in the diagram is associated with some
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generator gi of G(K) and some label hi from H. The natural candidate for a
homomorphism from G(K) to H is a map taking each gi to the corresponding
hi. It turns out that each Wirtinger relation among the gi corresponds to a
relation (required by GL2) among the hi, so that the map taking gi to hi can
indeed be extended to a homomorphism. (To show this formally, one writes
down presentations for the two groups and applies Van Dyck’s Theorem (see
[5]).) The condition GL1 guarantees that our homomorphism is surjective.

For the second statement, we are given a surjective homomorphism ϕ :
G(K) → H and a diagram of K. The natural way to label the diagram
is to assign to each strand i the group element ϕ(gi), where gi is the strand’s
Wirtinger generator. The Wirtinger relations map to just the relations re-
quired by GL2, and the fact that ϕ is surjective is exactly GL1. ¤

Claim 2 now follows easily from Lemma 5 and, in turn, establishes Claim 1.

The idea of labelling knot diagrams seems to have originated with R. H. Fox.
In [4], he explains how a knot group may be studied by considering its ho-
momorphic images in metacyclic groups. Specializing to the dihedral groups
leads directly to the mod-p labellings which were our starting point.

6 Torus knots

Let m and n be relatively prime. An (m, n) torus knot, denoted Tm,n, is a
simple closed curve that winds around a standard torus m times in the lon-
gitudinal direction and n times in the meridional direction. More concretely,
if we let ρ : R2 → R3 by

ρ(x, y) = ((2 + cos 2πy) cos 2πx, (2 + cos 2πy) sin 2πx, sin 2πy),

then the image under ρ of the line segment from the origin to the point (m,n)
is an (m,n) torus knot. Figure 6 shows the torus knot T3,5 on the surface of
a standard torus.

It is known ([9], Proposition 7.5) that the number of crossings in any diagram
of an (m,n) torus knot is at least the minimum of m(n−1) and n(m−1). For
larger values of m and n, this makes the Wirtinger presentation of G(Tm,n)
unwieldy. However, it is easy to compute the knot group of a torus knot
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using the Seifert-Van Kampen theorem. In fact, finding G(Tm,n) is literally
a textbook example (see [8], p. 136 or [3], p. 92) of a Seifert-Van Kampen
computation.

Figure 6: The torus knot T3,5 on the surface of a torus, and a ten-strand
diagram of T3,5.

Recall that the Seifert-Van Kampen theorem describes the fundamental group
of a path-connected union X1∪X2 in terms of the fundamental groups of X1,
X2, and X1∩X2. Roughly speaking, we obtain a presentation of π1(X1∪X2)
by combining the generators and relations from π1(X1) and π1(X2), and then
throwing in an extra relation for each generator of π1(X1 ∩X2). The extra
relations account for the fact that a closed path σ in X1 ∩X2 represents si-
multaneously some element of π1(X1) and some element of π1(X2). In π1(X),
the two group elements represented by σ must be equal, and so we include a
relation that says so.

To compute the fundamental group of R3−Tm,n, we place Tm,n on a standard
torus, as in Figure 6. The intersection of this torus with the complement of
Tm,n is a ribbon which winds around the torus m times in the longitudinal
direction and n times in the meridional direction. Let R denote this ribbon.
The space X1 will be the region inside the torus, along with R, and the space
X2 will be the region outside the torus, along with R. We choose a point
somewhere in X1 ∩X2 to serve as a base point for all spaces concerned.

The space X1 is topologically a solid torus, so its fundamental group is a
free group on a single generator x, corresponding to a path that makes one
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trip around the “hole” in the torus. It is not immediately obvious that the
space X2 is also topologically a solid torus, but it should be plausible that its
fundamental group is also a free group on a single generator y, corresponding
to a path that passes once through the hole.

Figure 7: The space R = X1 ∩X2 in the complement of T3,5.

The intersection of X1 and X2 is the ribbon R. Since R is topologically
an annulus, its fundamental group is also free on one generator, which is
represented by a path σ making one trip around the annulus. From the point
of view of X1, the path σ makes m trips around the torus, so it represents
xm. From X2’s point of view, σ passes n times through the hole in the torus,
so it represents yn.

The result of all this is that the knot group of Tm,n, which is the fundamental
group of X1 ∪X2, has the simple presentation

G(Tm,n) = 〈x, y : xm = yn〉 .

7 Knots with no mod-p labellings

An (m,n) torus knot is called odd if both m and n are odd. To finish our
proof that odd torus knots have no mod-p labellings, we need to show that
there can be no surjective homomorphism from the group G(Tm,n) to the
group Dp when m and n are both odd and p is an odd prime.
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To begin, we write down the group presentations G(Tm,n) = 〈x, y : xm = yn〉
and Dp = 〈r, s : rp = 1, s2 = 1, sr = r−1s〉, and suppose that we have a
homomorphism ϕ : G(Tm,n) → Dp. Next, we apply Barry Commoner’s
second law of ecology (see [2]), “Everything must go somewhere.” In the
present instance, this says that ϕ(x) must be either rk for some k or else srk

for some k, since these account for all the elements of Dp. Similarly, ϕ(y) is
either rj or srj for some j. We consider the four possible cases.

Image
of x

Image of y
rj srj

rk I II

srk III IV

Case I Since ϕ(x) and ϕ(y) are both powers of r, the entire image of ϕ is
contained in the cyclic subgroup of Dp generated by r. Thus ϕ is
not surjective.

Case II Since ϕ is a homomorphism and xm = yn in G(Tm,n), we must have

(ϕ(x))m = ϕ(xm) = ϕ(yn) = (ϕ(y))n. (1)

The order of srj is 2 and n is odd, so (ϕ(y))n = (srj)n = srj. So
srj must also be equal to (ϕ(x))m, which in this case is rkm. But
rkm is a power of r and srj is not, so this case cannot occur.

Case III This is just Case II with the roles of x and y interchanged.

Case IV Because m and n are odd and the elements srj and srk are of order
2, equation (1) implies that srj = srk. But if x and y both map to
the same element and that element has order 2, then the image of
ϕ contains only two elements, so it can’t be all of Dp.

We have shown that there can be no surjective homomorphism from G(Tm,n)
to Dp, and thus arrived by fairly elementary means at an answer to our
question about labellings.

Theorem 6 An odd torus knot has no valid mod-p labelling for any prime
p ≥ 3.
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