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1 Introduction

Let k ≥ 3 be an integer and let Γ be a k-regular, undirected graph with
a finite number N of vertices. If A is an adjacency matrix for Γ, then the
multiset {λ1, λ2, . . . , λN} of eigenvalues of A is called the spectrum of the
graph Γ. Since Γ is undirected, A is symmetric and so its eigenvalues are
all real. Also, since A is determined by Γ up to a permutation of the rows
and columns, the spectrum of Γ does not depend on the particular adjacency
matrix A.

The universal cover of any k-regular graph is the k-tree, which we will denote
Xk. We let G denote the group of automorphisms of Xk. A k-regular graph
Γ may then be viewed as the quotient of Xk by a freely-acting subgroup H
of G. The vertices of Γ = H\Xk are the orbits Hx of vertices in Xk, and Hx
is adjacent to Hy in H\Xk if and only if each element of Hx is adjacent to
some element of Hy in Xk.

Our main result is

Theorem 12 Let H\Xk be an N-vertex, k-regular graph with no loops or
parallel edges. For each integer n ≥ 1, let

Pn =
∑

[hi]H⊂[tn]G

L(CH(hi))
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where [tn]G is the G-conjugacy class containing all length-n translations in
H and L(CH(hi)) denotes the length of a generator of the centralizer CH(hi)
of hi in H.

Then the spectrum of H\Xk determines and is determined by the sequence
P1, P2, . . . , PN .

We view this theorem as a combinatorial analogue to a theorem of DeTurck
and Gordon ([2], Theorem 1.16). Their results states that two compact quo-
tients H1\M and H2\M of a Riemannian manifold M by uniform discrete
subgroups H1 and H2 of Lie group G acting freely and properly discontinu-
ously by isometries on M are isospectral if, for each h ∈ G,∑

[hi]H1⊂[h]G

ρ(hi)(CH1(hi)\CG(hi)) =
∑

[hi]H2⊂[h]G

ρ(hi)(CH2(hi)\CG(hi))

where the ρ(hi) are ad hoc Haar measures, brought briefly into the picture in
order to measure the centralizers of elements hi in H1 and H2. In the graph-
theoretic setting, the centralizers CH(hi) are cyclic, and the Haar measures
are replaced by the notion of the length of a generator.

Both our Theorem 12 and the DeTurck and Gordon theorem are descendants
of the isospectrality conditions introduced by Sunada ([7]) in 1985.

2 Definitions

We begin by defining some of our graph-theoretic terms.

Let Γ be a graph (always assumed to be undirected). An n-walk W in Γ is
a sequence

(x0, e1, x1, e2, x2, . . . , en, xn)

of vertices xi and edges ei such that each ei is incident on xi−1 and xi. We
say the walk begins at the vertex x0 and ends at the vertex xn. An n-walk
W is closed if x0 = xn. It is non-backtracking (denoted nbt) if ei 6= ei+1 for
each i.

Let W = (x0, e1, x1, e2, x2, . . . , en, xn) be a closed nbt n-walk. If e1 6= en,
then W is tailless. Otherwise, since W is nbt, there is a greatest integer
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r < n/2 for which er = en−r in W. We say that W has a tail of length r, and
that

W ′ = (xr, er+1, xr+1, . . . , en−r−1, xr−n−1)

is the tailless part of W.

There is a natural equivalence relation on tailless nbt n-walks in which two
such n-walks

W1 = (x0, e1, x1, . . . , en, xn) and W2 = (y0, f1, y1, . . . , fn, yn)

are equivalent if and only if the vertices and edges of W2 are a cyclic permu-
tation of those of W1. That is, W1 and W2 are equivalent if and only if there
is some j with yi = xi+j and fi = ei+j for all i, where the subscripts are read
modulo n. The class of a tailless nbt n-walk under this equivalence is called
the cycle represented by W, and will be denoted 〈W 〉.

The k-tree Xk is simply connected, and thus given any two vertices x and
y in Xk, there is a unique nbt n-walk beginning at x and ending at y. In
this case, we define the distance between x and y to be n, and denote it by
dist(x, y). It is easily verified that our definition yields an actual distance
function.

A geodesic in Xk is an infinite nbt walk.

3 Graph-theoretic Bessel functions

We now turn to the k-tree analogue of Bessel functions, which help to make
the connection between the spectral and combinatorial properties of a regular
graph.

Let V (Xk) denote the vertex set of Xk. Let A be the operator on the function
space CV (Xk) given by

(Af)(x) =
∑
y∼x

f(x)

for f ∈ CV (Xk). The notation “y ∼ x” means that the vertices x and y are
joined by an edge.
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Let x0 be a vertex in Xk and for each non-negative integer l, let C(x0, l)
denote the set {x ∈ V (Xk) : dist(x0, x) = l}.

Lemma 1 For each real number λ, there is a unique function Sλ : N → C
such that if f : V (Xk)→ C is any function satisfying Af = λf , then∑

x∈C(x0,l)

f(x) = f(x0)Sλ(l)

for each non-negative integer l.

Furthermore, for each l, Sλ(l) is a polynomial in λ of degree l.

Proof Without loss of generality, assume f(x0) 6= 0. We proceed by induc-
tion. For l = 0, we have C(x0, 0) = {x0}, which implies that Sλ(0) = 1. For
l = 1, the condition Af = λf requires that

λf(x0) =
∑

x∈C(x0,1)

f(x) = f(x0)Sλ(1)

so that Sλ(1) = λ. Now assume l > 1 and the statement holds for l − 1 and
l − 2. Then the condition Af = λf requires that∑

x∈C(x0,l−1)

λf(x) = (k − 1)
∑

x∈C(x0,l−2)

f(x) +
∑

x∈C(x0,r)

f(x).

Using the inductive hypothesis, we get

f(x0)λSλ(l − 1) = (k − 1)f(x0)Sλ(l − 2) + f(x0)Sλ(l).

This uniquely determines Sλ(l) as λSλ(l−1)− (k−1)Sλ(l−2). Again by the
inductive hypothesis, Sλ(l− 1) and Sλ(l− 2) are polynomials in λ of degrees
l − 1 and l − 2 respectively, so Sλ(l) is a polynomial in λ of degree l. �

Explicit formulas for these Bessel functions, along with some geometric ap-
plications, are found in [1] and [5].
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4 Point-pair invariants

A function f : V (Xk)× V (Xk)→ C is called a point-pair invariant if f(x, y)
depends only on the distance between x and y.

For each non-negative integer l, let δl : V (Xk)× V (Xk)→ C by

δl(x, y) =
{

1 if dist(x, y) = l
0 otherwise.

If f : V (Xk)× V (Xk)→ C is a point-pair invariant, then f may be written

f(x, y) =
∞∑
l=0

πlδl(x, y)

for some coefficients πl.

Let Γ = H\Xk be a finite, k-regular graph and let f be a point-pair invariant
on Xk. Let F : V (Γ)× V (Γ)→ C by

F (x, y) =
∑
h∈H

f(x̃, hỹ) (1)

where x̃ is a some lift of x and ỹ is some lift of y.

Lemma 2 With the notation above,

TrF =
N∑
i=1

∞∑
l=0

πlSλi(l)

where {λ1, λ2, . . . , λN} is the spectrum of Γ.

Proof (Also see [5].) Let A denote the operator on CV (Γ) given by

Aϕ(x) =
∑
y∼x

ϕ(y)

For ϕ ∈ CV (Γ). Then A may be represented by an adjacency matrix of
Γ, so A is self-adjoint (since adjacency matrices for Γ are symmetric) and

5



the set of eigenvalues of A is exactly the spectrum of Γ. Since A is self-
adjoint, there exists an orthonormal set {ϕ1, ϕ2, . . . , ϕN} of eigenfunctions
of A, corresponding to the eigenvalues λ1, λ2, . . . , λN in the spectrum of Γ.
Moreover, any lift of a λ-eigenfunction from Γ to Xk will be a λ-eigenfunction
of the adjacency operator A on Xk.

Expanding the function F (x, y) in terms of the ϕi, we get, for x, y ∈ V (Γ),

F (x, y) =
∑
i,j

aijϕi(x)ϕj(y) (2)

for some coefficients aij. We now calculate
∑

y∈V (Γ)

F (x, y)ϕs(y) in two different

ways. First, using (2), we have∑
y∈V (Γ)

F (x, y)ϕs(y) =
∑

y∈V (Γ)

∑
i,j

aijϕi(x)ϕj(y)ϕs(y) (3)

=
∑
i

aisϕi(x). (4)

Second, letting x̃ and ỹ denote lifts of x and y respectively, and using ϕ̃s to
denote a lift of the function ϕs, we have∑

y∈V (Γ)

F (x, y)ϕs(y) =
∑

y∈V (Γ)

∑
h∈H

f(x̃, hỹ)ϕs(y)

=
∑

v∈V (Xk)

f(x̃, v)ϕ̃s(v)

=
∑

v∈V (Xk)

∞∑
l=0

πlδl(x̃, v)ϕ̃s(v)

=
∞∑
l=0

πl
∑

v∈C(x̃,l)

ϕ̃s(v).

Now ϕ̃s is a λs eigenfunction of A, so by Lemma 1, we have for each l∑
v∈C(x̃,l)

ϕ̃s(v) = ϕ̃s(x̃)Sλs(l)

= ϕs(x)Sλs(l).
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Thus,

∑
y∈V (Γ)

F (x, y)ϕs(y) = ϕs(x)
∞∑
l=0

πlSλs(l). (5)

From lines (4) and (5) we have

∑
i

aisϕs(x) = ϕs(x)
∞∑
l=0

πlSλs(l),

from which we conclude that ais = 0 if i 6= s and

aii =
∞∑
l=0

πlSλi(l).

Thus

F (x, y) =
N∑
i=1

∞∑
l=0

πlSλi(l)ϕi(x)ϕi(y)

from which the result follows. �

Corollary 3 The trace of any function on V (Γ) × V (Γ) which arises from
a point-pair invariant via formula (1) is determined by the spectrum of Γ.

5 Closed nbt walks and the spectrum

Let Γ = H\Xk be a finite k-regular graph with N vertices. For each integer
l ≥ 0, let Dl : V (Γ)× V (Γ)→ C by

Dl(x, y) =
∑
h∈H

δl(x̃, hỹ)

where x̃ is some lift of x and ỹ is some lift of y.

Then we have
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Lemma 4 For each integer l ≥ 0, the trace of Dl is determined by the
spectrum of Γ. The numbers TrD1,TrD2, . . . ,TrDN determine the spectrum
of Γ.

Proof Since Dl comes from a point-pair invariant, by Corollary 3, its trace
is determined by the spectrum of Γ.

For the second assertion, by Lemma 2, we have

TrDl =
N∑
i=1

Sλi(l). (6)

Because Sλi(l) is a fixed lth-degree polynomial in λi, the right side of (6) is a
linear expression in the quantities

∑
λi,
∑
λ2
i , . . . ,

∑
λli, all sums taken as i

goes from 1 to N . For each power q, let mq denote the sum
∑
λqi , which is

known as the qth moment of the eigenvalues.

If we know TrD1,TrD2, . . . ,TrDN , then for each l = 1, 2, . . . , N , equation
(6) may be viewed as a linear equation in some subset of the unknowns
m1,m2, . . . ,ml. We have N such equations, and they are all independent,
because for each l, the coefficient of ml in the equation for TrDl is non-zero,
and the coefficients of all higher moments are zero. Thus we can solve the
system for the moments m1,m2, . . . ,mN . Then by Newton’s formulas (see
[8, p. 260]), we can reconstruct the spectrum from its first N moments. �

The trace of Dl has geometric significance, as well. Let x0 be a vertex in
Γ = H\Xk and x̃0 be some lift of x0 in the covering graph Xk. If x̃′0 is some
other lift of x0 at a distance l from x̃0, then the unique nbt l-walk from x̃0

to x̃′0 descends to a closed nbt l-walk at x0 in Γ. Conversely, each closed
nbt l-walk at x0 in Γ has a lift which is an nbt walk in Xk beginning at x̃0

and ending at some vertex x̃′0 at a distance l from x̃0.

Thus the nbt closed l-walks at x0 in Γ are in one-to-one correspondence with
the lifts of x0 at a distance l from a particular lift x̃0 in Xk. The number of
such lifts is just Dl(x0, x0). It follows that the trace of Dl counts the total
number of nbt closed l-walks in Γ. In summary, we have

Theorem 5 For each l, let dl denote the total number of nbt closed l-walks
in a N-vertex, k-regular graph Γ. Then for each l, dl = TrDl; the num-
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bers dl are determined by the spectrum of Γ; and the numbers d1, d2, . . . , dN
determine the spectrum of Γ.

6 Tree automorphisms and cycles

Let G denote the full automorphism group of the tree Xk. The following
classification of elements of G is found in [3].

Lemma 6 Let g ∈ G be different from the identity. Then exactly one of the
following three cases holds.

1. The element g fixes some vertex. In this case, g is called a rotation.

2. The element g fixes some edge e, interchanging the two vertices on
which e is incident. In this case, g is called an inversion.

3. There is some geodesic γ in Xk such that g(γ) = γ, and some positive
integer n such that for each x ∈ γ, dist(x, g(x)) = n. In this case, g is
called a translation.

More precisely, in case 3, g is called a length-n translation along γ. The
geodesic γ is called the axis of g. It is easy to check that if g is a length-n
translation, then dist(x, g(x)) ≥ n for all x ∈ V (Xk) with equality if and
only if x is on the axis of g. We will also make use of the fact that if g1 and
g2 are translations along the geodesic γ with respective lengths n1 and n2,
then g1g2 is a translation along γ of length either n1 + n2 or |n1 − n2|. (In
the latter case, if n1 = n2, then g1g2 is a rotation, rather than a translation.)

Let H be a subgroup of G such that H\Xk is a finite graph with no loops or
parallel edges. This implies that each non-trivial element ofH is a translation
of length at least 3. In fact, H can be identified with the free homotopy group
of H\Xk. We now explore this identification in some detail.

Let h ∈ H be a length-n translation, and pick a vertex x0 on the axis of h.
The unique nbt n-walk

(x0, e1, x1, e2, x2, . . . , xn−1, en−1, xn)
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from x0 to xn = h(x0) in Xk descends to a closed nbt n-walk W in Γ.
Moreover, W must be tailless, for if x1 and xn−1 descend to the same vertex,
then H contains an element h′ with h′(xn−1) = x1. Then h′h(x0) is a neighbor
of x1. If h′h(x0) = x0, then we must have h′ = h−1. But then h′ would be a
length-n translation, which is impossible, since

dist(xn−1, h
′(xn−1)) = dist(xn−1, x1) = n− 2.

So we must have dist(x0, h
′h(x0)) = 2, which implies h′h is a translation of

length at most 2. But this too is impossible, since H contains no translations
of length less than 3. Thus the images of x1 and xn−1 must be distinct, and
the walk W is a tailless closed nbt n-walk.

That is, the image of the n-walk

(x0, e1, x1, e2, x2, . . . , xn−1, en−1, xn)

along the axis of h represents an n-cycle in H\Xk. In fact, since the axis of
h is made up of translations of this n-walk by powers of h, it is clear that
any nbt n-walk along the axis of h descends to a representative of the same
n-cycle, and we have a well-defined map from elements of H to cycles in
H\Xk.

Let [H] denote the set of conjugacy classes in H. For h ∈ H, let [h]H denote
the H-conjugacy class of h in H. We define a map Φ from [H] to the set of
cycles in H\Xk as follows. For h ∈ H, let γh be the axis of h in Xk, and
map the conjugacy class [h]H to the cycle represented by the image of γh in
H\Xk.

Lemma 7 The map Φ is well-defined, one-to-one, and onto.

Proof To see that Φ is well-defined, we observe that if h ∈ H is a trans-
lation of length n and α ∈ H, then αhα−1 is also a translation of length n.
Furthermore, if γh is the axis of h, then the axis of αhα−1 is α(γh). Let
(x0, e1, x1, e2, . . . , xn−1,en, xn) be an nbt n-walk along γh and let W be its
image in H\Xk. Then

(α(x0), α(e1), α(x1), . . . , α(xn−1), α(en), α(xn))
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descends to the same walk W, since each α(xi) or α(ei) differs from the
corresponding xi or ei by an element α of the covering group.

To see that Φ is one-to-one, suppose that h1 and h2 are elements of H, and
their respective axes γh1 and γh2 descend to representatives of the same n-
cycle in H\Xk. Let x and y be two adjacent vertices on γh1 . Then there is
some α ∈ H such that α(x) is on γh2 . Because γh1 and γh2 cover the same
n-cycle, one of the neighbors of α(x) must be an H-translate of y, so there
is some β ∈ H such that β(y) is on γh2 and adjacent to α(x). Then β−1α(x)
must be adjacent to y. If β−1α(x) 6= x, then dist(x, β−1α(x)) = 2 which
cannot occur, so we must have β−1α(x) = x. Since H contains no rotations,
we must have β = α.

Repeating this argument for each pair of adjacent vertices along γh1 shows
that there is a single element α ∈ H taking γh1 to γh2 . Since h1 and h2

have the same length, αh2α
−1 and h1 must agree on some non-empty set

of vertices in γh1 , and since H contains no rotations, we may conclude that
αh2α

−1 = h1.

To see that Φ is onto, let 〈W 〉 be an n-cycle in H\Xk represented by a walk

W = (x0, e1, x1, . . . , xn−1, en, xn = x0).

Let W̃ be a lift of W to Xk and let x̃0 and x̃n denote the first and last vertices
in W̃. Then there is a unique element h ∈ H such that h(x̃0) = x̃n. We claim
that the axis of h contains x̃0 and x̃n, and thus W̃. If x̃0 were some positive
distance r off the axis of h, then x̃n would be the same distance off the axis
of h, and the projection of W̃ would have a tail. Since W̃ is tailless, it must
be that W̃ is on the axis of h, and thus that Φ([h]h) = 〈W 〉. �

7 Centralizers and primitive cycles

For h ∈ H, let CH(h) denote the centralizer of h in H.

Lemma 8 CH(h) is cyclic.

Proof Suppose h is a length-n translation along a geodesic γ. Let g ∈ CH(h)
and let x ∈ γ. Then dist(x, h(x)) = n, and since g is an automorphism,
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dist(g(x), gh(x)) = n. Now gh = hg, so we have dist(g(x), hg(x)) = n, which
shows that g(x) ∈ γ. It follows that g(γ) ⊂ γ, and thus that g is a translation
along γ.

Since CH(h) contains no non-trivial rotations and every element of CH(h)
fixes γ, CH(h) can contain at most one translation of any given length. The
element g of CH(h) with the smallest length must then generate all of CH(h).

�

An n-cycle 〈W 〉 is called primitive if a representative W of 〈W 〉 does not
make m > 1 trips around a representative of some n/m-cycle. If an n-cycle
represented by

W = (x0, e1, x1, . . . , xn−1, en, xn)

is not primitive, then there is some least index j (a factor of n) such that
xi = xj+i and ei = ej+i for all i. The walk

W ′ = (x0, e1, x1, . . . , xj−1, ej, xj)

represents a primitive j-cycle, called the primitive part of the cycle 〈W 〉.

Lemma 9 Let h ∈ H and let 〈W 〉 = Φ([h]H) be the cycle in H\Xk corre-
sponding to h. If g is a generator of CH(h), then Φ([g]H) is the primitive
part of 〈W 〉.

Proof Let 〈W ′〉 be the primitive part of 〈W 〉 and suppose 〈W ′〉 is a j-cycle.
Then there is a g ∈ Φ−1(〈W ′〉) that is a length-j translation along the axis
of h. Since ghg−1h−1 fixes the axis of h (and is not a rotation), ghg−1h−1

must be the identity, so g ∈ CH(h).

We claim that CH(h) is generated by g. If not, then CH(h) contains some
translation g′ along the axis of h (which is also the axis of g) having length k
dividing j, and such that (g′)j/k = g. But that would imply that Φ([g]H) con-
sists of j/k trips around Φ([g′]H), contradicting the assumption that Φ([g]H)
is primitive. Thus CH(h) is indeed generated by g. �

For h ∈ H, we denote by L(CH(h)) the length of a generator of the centralizer
CH(h) of h, or, equivalently, the length of the primitive part of the cycle
Φ([h]H).
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As a corollary to the proof of Lemma 9, we remark that if h′ and h are
conjugate in H, then L(CH(h)) = L(CH(h′)). This also follows easily from
the fact that CH(h) and CH(h′) are themselves conjugate subgroups of H, so
that L(CH(h)) depends only on the conjugacy class of h.

8 An isospectrality condition

Lemma 10 Let 〈W 〉 be an n-cycle in a k-regular graph H\Xk, and let j be
the length of the primitive part of 〈W 〉.

1. There are j distinct closed, tailless nbt n-walks in H\Xk that represent
the cycle 〈W 〉.

2. For each integer r ≥ 1, there are j(k− 2)(k− 1)r−1 distinct closed nbt

(n+ 2r)-walks in H\Xk whose tailless parts represent the cycle 〈W 〉.

Proof

1. The tailless, closed nbt n-walks representing 〈W 〉 correspond to the
vertices in the cycle 〈W 〉 where such a walk could begin. The number of
such vertices yielding distinct walks is equal to the number of vertices
in the primitive part of 〈W 〉.

2. We get a closed nbt (n + 2r)-walk whose tailless part represents 〈W 〉
by attaching a tail of length r to some vertex in 〈W 〉. The number
of length-r tails which may be attached to a vertex of 〈W 〉 without
backtracking is (k − 2)(k − 1)r−1. The number of sites on 〈W 〉 where
attaching length-r tails yields distinct (n+ 2r)-walks is again equal to
the number of vertices in the primitive part of 〈W 〉.

�

Let n ≥ 3 be an integer, and suppose H contains a length-n translation tn.
Let [tn]G denote the G-conjugacy class of tn in G. By [4], Proposition 2.9,
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we know [tn]G contains every length-n translation in H. The set [tn]G ∩H is
a union of finitely many H-conjugacy classes [hi]H in H.

If [tn] ∩H is non-empty, let

Pn =
∑

[hi]H⊂[tn]G

L(CH(hi)).

If [tn] ∩H is empty, set Pn = 0.

By Lemma 7 and Lemma 9, the number Pn may be viewed as the sum over
all n-cycles 〈W 〉 in H\Xk of the length of the primitive part of 〈W 〉. That
is, Pn is equal to the number of sites in H\Xk where we may attach a tail
(possibly of length 0) to an n-cycle to get a closed nbt walk.

Since every closed nbt walk in H\Xk arises from some cycle, we can now
use Lemma 10 to count all the closed nbt walks in H\Xk. For each length
n, H\Xk contains Pn closed nbt n-walks and (k−2)(k−1)r−1Pn closed nbt

(n+ 2r)-walks for each r ≥ 1.

Looking at this another way, we have the following result.

Lemma 11 Letting dn denote the total number of closed nbt n-walks in
H\Xk, and Pn be as above, we have

dn = Pn + (k − 2)Pn−2 + (k − 1)(k − 2)Pn−4 + (k − 1)2(k − 2)Pn−6 + · · ·

where the sum terminates with the P3 or P4 term, according to the parity of
n.

Thus for each n ≥ 1 the numbers P1, P2, P3, . . . , Pn (the first two of which
are 0) determine the numbers d1, d2, d3, . . . , dn. In fact, the equations in
Lemma 11 giving the dn in terms of the Pk for k ≤ n are all independent,
and each is linear in the Pk, so the system may be solved for the Pk. That
is, the numbers d1, d2, d3, . . . , dn determine the numbers P1, P2, P3, . . . , Pn.

Since the numbers dn determine and are determined by the spectrum of the
graph, we have established our main result.

14



Theorem 12 Let H\Xk be an N-vertex, k-regular graph with no loops or
parallel edges. For each integer n ≥ 1, let

Pn =
∑

[hi]H⊂[tn]G

L(CH(hi))

where [tn]G is the G-conjugacy class containing all length-n translations in
H and L(CH(hi)) denotes the length of a generator of the centralizer CH(hi)
of hi in H. Then the spectrum of H\Xk determines and is determined by
the sequence P1, P2, . . . , PN .

9 Postscript: The Ihara zeta function

We remark that the numbers Pn that appear in our Theorem 12 also turn
up in a somewhat different approach to the same subject.

In [6] we find a discussion of the Ihara zeta function Z(u) associated with a
graph Γ, given by

Z(u) =
∏

(1− uL(〈W 〉))−1

where the product is taken over all primitive cycles 〈W 〉 in Γ, and L(〈W 〉)
denotes the length of the cycle 〈W 〉.

If Γ is k-regular and {λ1, λ2, . . . , λN} is the spectrum of Γ, then it can be
shown that the Ihara zeta function has the spectral expression

Z(u) =

[
(1− u2)r−1

∏
i

(1− λi + (k − 1)u2)

]−1

where r is the rank of the fundamental group of Γ.

The numbers Pn appear when we consider the logarithmic derivative of Z(u).
Specifically, we have

u
d

du
logZ(u) =

∑
〈W 〉 primitive

L(〈W 〉)
∑
j≥1

ujL(〈W 〉).
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The coefficient of un in this expression is a sum of the lengths of all the
primitive cycles whose lengths divide n. That is, it is the number of distinct
sites where a tail, possibly of length 0, could be attached to an n-cycle
(primitive or not) in Γ. This quantity is exactly our number Pn, and so

u
d

du
logZ(u)

may be viewed as a generating function for the Pn.
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