
Combinatorics of free product graphs

Gregory Quenell

March 8, 1994

Abstract

We define the return generating function on an abstract graph,
and develop tools for computing such functions. The relation between
a graph’s return generating function and its spectrum is discussed.

1 Introduction

In his 1986 dissertation “Random walks and convolution operators on free
products” [4], John C. McLaughlin computes the spectrum of the Cayley
graph of the free product group Z/(2) ? Z/(3), putting to use a theorem he
proves about the relations among the Green’s functions on the Cayley graph
of a free product and the Cayley graphs of the factor groups.

To state this theorem in McLaughlin’s notation, let A and B be finitely-
generated groups, and for any group C let

G(C)(w) = [(wI − A)−1δe](e)

where A is the adjacency operator on a Cayley graph of C, I is the identity
operator, and δe is the delta function at the identity element e. Assume
we have fixed, undirected Cayley graphs for A and B. Then McLaughlin’s
theorem says

G(A?B)(w) = G(A)(w − sB(w))

G(A?B)(w) = G(B)(w − sA(w))

G(A?B)(w) =
1

1− sA(w)− sB(w)

1

where sA(w) and sB(w) are functions which can be determined by solving
this system.

The Green’s function G(C)(w) on a Cayley graph is closely related to the
combinatorial return generating function on the same graph. Our purpose
in this paper is to present a combinatorial form of McLaughlin’s theorem,
stated in terms of return generating functions. In doing so, we will generalize
somewhat the class of graphs to which this technique applies. This general-
ization will be very slight, however. Our principal goal is to provide a purely
combinatorial proof of a theorem equivalent to that stated above.

In section 2 we establish notation and discuss the adjacency operator on
an abstract graph. In section 3 we define the connected sum of two graphs and
develop techniques (theorem 3.2 and corollary 3.3) for computing the return
generating function on a finite graph. In section 4 we examine the Cayley
graph of a free product, and define the free product of general graphs. We
then prove theorem 4.9, our combinatorial version of McLaughlin’s theorem,
and apply it to a few examples.

2 The setting

2.1 Walks

Let Γ be an undirected graph.

Definition 2.1 A walk of length n in Γ is a sequence of vertices and edges

v1ε1v2ε2 · · · vnεnvn+1

in which each edge εi is incident at vi and vi+1. If v1 = vn+1, the walk is
called a closed walk of length n at v1. Otherwise, it is called a walk of length
n from v1 to vn+1.

Note that a walk is completely determined by its initial vertex and its
edge sequence. If Γ is not a multigraph, then a walk is determined, also, by
its vertex sequence.

We make no restrictions on the vertices and edges of a walk beyond those
in the definition. In particular, any vertex or edge may occur any number
of times in a walk. Viewing a walk informally as the path followed by some
graph-dwelling creature that steps from vertex to vertex along edges, we
remark that a walk may “double back on itself” any number of times.

2

2.2 Rooted graphs

In most of our graphs, we will want to have a distinguished vertex to serve
as a sort of “home base” for our graph-dwelling creature. We will call this
distinguished vertex the root of the graph, and make the following definition.

Definition 2.2 A rooted graph is a pair (Γ, e), where Γ is a graph and e is
a vertex in Γ.

If Γ is a Cayley graph, for example, we will normally choose for e the
vertex corresponding to the identity.

2.3 Return generating functions

Given a rooted graph (Γ, e), we are interested in counting, for each non-
negative integer n, the number of closed walks of length n in Γ at e. We will
do so by means of a generating function.

Definition 2.3 The return generating function for Γ at e is the power series

Re(z) =
∞∑

n=0

ρnzn

where ρn is the number of closed walks of length n in Γ at e.

A closed walk in Γ at e may visit the vertex e many times. A close relative
of the return generating function is the first-return generating function, which
counts the number of walks which begin at e and return to e for the first
time after exactly n steps.

Definition 2.4 The first-return generating function for Γ at e is the power
series

Qe(z) =
∞∑

n=0

ζnz
n

where ζn is the number of walks of length n in Γ in which e occurs as the
first vertex and the last vertex, but never as an intermediate vertex. For
convenience, we set Qe(0) = 0.

3

Here and throughout this paper, we will regard generating functions as
formal power series, without worrying about questions of convergence. Our
generating functions will not be “functions” so much as simple combinatorial
gadgets, useful because of the formal properties of power series multiplication
and addition.

The power series Re(z) and Qe(z) are related by the following theorem.

Theorem 2.5 Let (Γ, e) be a rooted graph with return generating function
Re(z) and first-return generating function Qe(z). Then

Re(z) =
1

1−Qe(z)
(1)

Qe(z) = 1− 1

Re(z)
. (2)

Proof. Every closed walk of length n at e is made up of a unique sequence
of first-return closed walks at e whose aggregate length is n. Thus we can
count all closed walks of length n at e by summing sequences of first-return
closed walks over all possible ordered partitions of the number n. Specfically,
we have

ρn =
∑

γ1+γ2+···+γk=n

ζγ1ζγ2 · · · ζγk
(3)

where the γi are positive integers (recall that ζ0 = 0). If we adopt the
convention that the only partition of n = 0 is the empty partition, and that
the empty product is equal to 1, then equation (3) works for all n. Observing
that there are no partitions of n with length less than 1 (unless n = 0) or
greater than n, we can group the terms in the sum above by the length of
the partition, without having to be too careful about summation limits.

ρn =
∞∑

p=0


 ∑

γ1+γ2+···+γp=n

ζγ1ζγ2 · · · ζγp


 . (4)

Raising Qe(z) to the power p, we have

(Qe(z))p =

(∞∑
n=0

ζnz
n

)p

=
∞∑

n=0


 ∑

γ1+γ2+···+γp=n

ζ1ζ2 · · · ζn


 zn.

4

That is, the coefficient of zn in the product [Qe(z)]p is the sum of ζγ1ζγ2 · · · ζγp

over all p-length partitions γ1 + γ2 + · · ·+ γp of n. Thus equation (4) tells us
that ρn is the sum over all p of the coefficient of zn in [Qe(z)]p. This makes
ρn equal to the coefficient of zn in

1 + Qe(z) + [Qe(z)]2 + · · · = 1

1−Qe(z)
.

Two generating functions with the same coefficients are equal, so we have
established claim (1) above. Equation (2) is simply equation (1), solved for
Qe(z). ¤

2.4 Connected sums

Let (Γ1, e1) and (Γ2, e2) be rooted graphs. We form the connected sum
(Γ1, e1)](Γ2, e2) by gluing the vertices e1 and e2 together. The new graph
looks like Γ1 with a copy of Γ2 hanging off it at e1, or like Γ2 with a copy of
Γ1 hanging off it at e2, depending on one’s point of view.

To be precise, we will make the following definition.

Definition 2.6 Let (Γ1, e1) and (Γ2, e2) be rooted graphs. Let Vi and Ei be
the vertex and edge sets of Γi. For i = 1, 2, let E ′

i be the set formed from Ei

by replacing every occurrence of ei with a new symbol e. Let V ′
i be the set Vi

with the element ei removed. Then the graph (Γ1, e1)](Γ2, e2) has vertex set
V ′

1 ∪ V ′
2 ∪ {e} and edge set E ′

1 ∪ E ′
2. The root vertex of (Γ1, e1)](Γ2, e2) is e.

The connected sum operator is obviously commutative and associative,
so an expression like

k

]
i=1

(Γi, ei)

makes sense.
When no mistake can be made about which vertex of a rooted graph is

the root, we may slip back into less careful notation, and write expressions
like

k

]
i=1

Γi.

We have the following tools to help us count closed walks in such a con-
nected sum.

5

Theorem 2.7 Let (Γi, ei) be rooted graphs for i = 1, . . . , k. Let Qei
(z) be

the first-return generating function for (Γi, ei). Then

1. The first-return generating function Qe(z) for the connected sum of all
the (Γi, ei) is

Qe(z) =
k∑

i=1

Qei
(z).

2. The return generating function Re(z) for the connected sum of all the
(Γi, ei) is

Re(z) =
1

1−
k∑

i=1

Qei
(z)

Proof. A first-return closed walk in a connected sum must stay in only
one of the summand graphs, because the summand graphs are intercon-
nected only through the root vertex. Thus every first-return closed walk in
a connected sum is in fact a first-return closed walk in one of the summand
graphs. Each function Qei

(z) counts the first-return paths in a separate sum-
mand graph, so by the addition principle, the sum of the Qei

(z) counts the
first-return paths in all the summand graphs. The second assertion follows
from the first by applying theorem 2.5. ¤

2.5 Symmetric graphs

The computation of Re(z) will be our main activity in this paper. We know
of one case where finding an explicit expression for Re(z) is quite straight-
forward.

Definition 2.8 A graph Γ is symmetric if, for every pair of vertices x and
y, there is an isomorphism of Γ which takes x to y.

That is, a symmetric graph looks the same from any vertex. A Cayley
graph, for example, is always symmetric. In the next section, we show how
to find an explicit expression for Re(z) when Γ is symmetric and finite.

6

3 Re(z) on a finite graph

3.1 The adjacency operator and its spectrum

Let Γ be an undirected graph.
By a function on Γ, we mean a mapping from the vertices of Γ to

the real numbers. Thus L2(Γ) is a vector space over R, with basis {δx :
x is a vertex in Γ}, where the delta function δx is given by

δx(y) =

{
1 if x = v
0 otherwise.

If the number of vertices in Γ is a finite number N , then L2(Γ) is isomorphic
to the usual Euclidean space RN . We define the inner product 〈·, ·〉 on L2(Γ)
in the correspondingly usual way: if f and g are functions on Γ, then

〈f, g〉 =
∑
x∈Γ

f(x)g(x)

where the sum is taken over all the vertices in Γ.
For each pair of vertices x and y in Γ, let C(x, y) denote the number

of edges in Γ whose endpoints are x and y. (If Γ is not a multigraph, this
number will always be zero or one.) Define the operator A on L2(Γ) by

(Af)(x) =
∑
y∈Γ

C(y, x)f(y).

We claim that the operator A is self-adjoint. This follows immediately
from the fact that C(x, y) = C(y, x) for all x and y, which is nothing more
than the statement that Γ is undirected. To carry this out in some detail,
let f, g ∈ L2(Γ). Then

〈Af, g〉 =
∑
x∈Γ

∑
y∈Γ

C(y, x)f(y)g(x)

=
∑
y∈Γ

f(y)
∑
x∈Γ

C(y, x)g(x)

=
∑
y∈Γ

f(y)
∑
x∈Γ

C(x, y)g(x)

= 〈f, Ag〉.

7

Now let us assume that Γ is finite, with N vertices, so that A is a linear
operator on the space RN . Because A is self-adjoint, it is unitarily equivalent
to a real diagonal operator. That is, there exist functions ϕ1, ϕ2, . . . , ϕN and
real numbers λ1, λ2, . . . , λN such that the ϕi are an orthonormal basis for
L2(Γ), and for each i,

Aϕi = λiϕi.

The set of eigenvalues {λ1, λ2, . . . , λN} is usually called the spectrum of
Γ, without explicit reference to the operator A.

If we identify L2(Γ) with the Euclidean space RN by numbering the ver-
tices x1, x2, . . . , xN in some arbitrary manner, and then mapping each delta
function δxi

to a basis vector ei of RN , we can write the operator A in matrix
form. The (i, j)th entry of A is equal to C(xi, xj), the number of edges in
Γ whose endpoints are xi and xj. That is, the operator A in matrix form
is simply an adjacency matrix of Γ, and to find the spectrum of Γ, we need
only write down this matrix and diagonalize it.

3.2 Spectral formulas for Re(z)

We will write the return generating function Re(z) for Γ in terms of the λi

and ϕi, but first, we need to state the relation between the operator A and
walks in Γ.

Lemma 3.1 Let x and y be vertices in an undirected graph Γ. Let ρn(x, y)
denote the number of walks of length n in Γ from x to y. Then

ρn(x, y) = 〈δx, A
nδy〉.

Proof. We proceed by induction. In the base case, when n = 0, the left-
hand side is (by definition) 1 if x = y and 0 otherwise. The right-hand side
reduces to 〈δx, δy〉, which is also 1 if x = y and 0 otherwise.

Now assume n ≥ 1 and ρn−1(x, y) = 〈δx, A
n−1δy〉 for each pair of vertices

x and y. Consider a walk of length n from x to y. Its first step goes from
x along some edge to a neighbor z of x. The remainder of the walk is a
walk of length n − 1 from z to y. Thus, one way to construct any walk of
length n from x to y is to choose an edge by which to leave x, and then
(independently) choose a walk of length n − 1 from the other end of that

8

edge to the vertex y. This combinatorial argument gives us the following
expression for ρn:

ρn(x, y) =
∑
z∈Γ

C(x, z)ρn−1(z, y)

=
∑
z∈Γ

C(x, z)〈δz, A
n−1δy〉

=
∑
z∈Γ

C(x, z)(An−1δy)(z)

= [A(An−1δy)](x)

= 〈δx, A
nδy〉

as required. ¤
We are now ready to compute Re(z) for a finite graph.

Theorem 3.2 Let Γ be a finite graph. Let {λ1, λ2, . . . , λN} be its spectrum,
and let {ϕ1, ϕ2, . . . , ϕN} be an orthonormal set of eigenfunctions for A, such
that Aϕi = λiϕi. Let e be a vertex in Γ. Then

Re(z) =
N∑

i=1

ϕ2
i (e)

1− λiz
.

Proof. By lemma 3.1, we know that

ρn = ρn(e, e) = 〈δe, A
nδe〉 (5)

Because the eigenfunctions ϕi span L2(Γ), we can write δe as a linear com-
bination of the ϕi, as follows:

δe =
N∑

i=1

〈δe, ϕi〉ϕi (6)

=
N∑

i=1

ϕi(e)ϕi. (7)

We now substitute expression (7) for the second δe in equation (5), to get

ρn = 〈δe, A
n

N∑
i=1

ϕi(e)ϕi〉

9

= 〈δe,

N∑
i=1

λnϕi(e)ϕi〉

=
N∑

i=1

λn
i ϕ

2
i (e).

Next we substitute this expression for ρn into the definition of Re(z):

Re(z) =
∞∑

n=0

ρnzn

=
∞∑

n=0

N∑
i=1

λn
i ϕ2

i (e)z
n

=
N∑

i=1

(∞∑
n=0

λn
i z

n

)
ϕ2

i (e)

=
N∑

i=1

ϕ2
i (e)

1− λiz
.

¤
The appearance of the numbers ϕi(e) in the formula in theorem 3.2 is

somewhat irritating (since the ϕi are not as easy to find as the λi), but seems
unavoidable; because we did not assume Γ to be symmetric, any formula
for Re(z) must have some dependence on e. If, however, we include the
assumption that Γ is symmetric, we can easily make this dependence go
away.

Corollary 3.3 Let Γ be a symmetric graph with a finite number N of ver-
tices. Let {λ1, λ2, . . . , λN} be its spectrum. Let e be a vertex in Γ. Then

Re(z) =
1

N

N∑
i=0

1

1− λiz
.

Proof. Let {ϕ1, ϕ2, . . . , ϕN} be an orthonormal set of eigenfunctions, cor-
responding to {λ1, λ2, . . . , λN}. By theorem 3.2, for each vertex x in Γ, we
have

Rx(z) =
N∑

i=1

ϕ2
i (x)

1− λiz
.

10

We sum this expression over all vertices x to get

∑
x∈Γ

Rx(z) =
∑
x∈Γ

N∑
i=1

ϕ2
i (x)

1− λiz
(8)

=
N∑

i=1

1

1− λiz

∑
x∈Γ

ϕ2
i (x) (9)

=
N∑

i=1

1

1− λiz
(10)

because each ϕi is assumed to have norm 1.
Now, because Γ is symmetric, it looks the same from every vertex, and so

the return function at any vertex is equal to the return function at e. This
implies that ∑

x∈Γ

Rx(z) = NRe(z),

so that

Re(z) =
1

N

∑
x∈Γ

Rx(z).

Putting this together with equation 10 yields the result we have claimed.
¤

3.3 Examples I

We will want some building blocks to play with later, so let’s define some
graphs and calculate their return generating functions.

Let Fk be the graph with k + 1 vertices v0, v1, . . . , vk, and with edge set

{(v0, v1), (v0, v2), . . . , (v0, vk)}.

(We think of F as in “fork”.) Figure 1 shows pictures of F3 and F5. We will
make Fk a rooted graph by declaring v0 to be the root.

It is not difficult to calculate Rv0(z) for Fk using theorem 3.2. There is a
k−1-dimensional eigenspace with eigenvalue 0 on Fk, spanned by eigenfunc-

tions ϕ with ϕ(v0) = 0 and
k∑

i=1

ϕ(vi) = 0. The remaining two eigenvalues are

11

F3 F5

Figure 1: Fork graphs

±
√

k, and it is not hard to find orthonormal eigenfunctions corresponding to
these eigenvalues. They are

ϕ√k(v0) =
1√
2
; ϕ√k(vi) =

1√
2k

for i 6= 0

ϕ−
√

k(v0) =
1√
2
; ϕ−

√
k(vi) = − 1√

2k
for i 6= 0.

The formula in theorem 3.2 gives us

Rv0(z) =
1
2

1−
√

kz
+

1
2

1 +
√

kz

=
1

1− kz2
.

Of course, this return generating function could easily have been found by
inspection, or even more easily, by observing that the first return generating
function at v0 is simply kz2, and applying theorem 2.5.

For k ≥ 3, let Ck denote the graph consisting of a single cycle of k vertices.
C3 and C4 are shown in figure 2.

These are symmetric graphs, so we can find the return functions Re(z)
at any vertex e using just their spectra.

The spectrum of C3 is easily found to be 2,−1,−1, and the spectrum of
C4 is 2, 0, 0,−2. Thus, applying corollary 3.3, we have for C3

Re(z) =
1

3

(
1

1− 2z
+

2

1 + z

)

=
z − 1

2z2 + z − 1
,

12

C3 C4

Figure 2: Cycle graphs

and for C4

Re(z) =
1

4

(
1

1− 2z
+ 2 +

1

1 + 2z

)

=
2z2 − 1

4z2 − 1
.

The connected sum of F3 and C4 is shown in figure 3.

Figure 3: F3]C4

The root vertex e is the vertex shared by the two summand graphs. We
can find Re(z) for this graph using theorem 2.7. We first note that the first
return function Qv0(z) for F3 is 3z2. We can find the first return function
Qe(z) for C4 by using the formula (from theorem 2.5)

Qe(z) = 1− 1

Re(z)
.

This gives us Qe(z) =
2z2

1− 2z2
for C4. Theorem 2.7 now gives us the return

generating function for the connected sum as

Re(z) =
1

1−Qv0(z)−Qe(z)
(11)

13

=
1− 2z2

6z4 − 7z2 + 1
. (12)

Since this function is equal, by theorem 2.5, to

7∑
i=1

ϕ2
i (e)

1− λiz

where {λ1, λ2, . . . , λ7} is the spectrum of F3]C4, we know that the set

{λ1, λ2, . . . , λ7}

must contain the reciprocals of the roots of 6z4−7z2+1. That is, the numbers
±1 and ±√6 are in the spectrum of F3]C4.

4 Re(z) on a free product

4.1 The Cayley graph of a free product

Let G1 and G2 be finitely-generated groups. Pick a finite, symmetric set of
generators

S1 = {g1, g
−1
1 , g2, g

−1
2 , . . . , gk, g

−1
k }

for G1, and a set of relations R1 among the gi sufficient to form the presen-
tation

G1 = 〈S1 : R1〉.
Let Γ1 be the Cayley graph of G1 with respect to the generators S1. The
symmetry of S1 lets us view Γ1 as an undirected graph.

Similarly, let S2 be a finite symmetric set of generators for G2 and form
the presentation

G2 = 〈S2 : R2〉
and the Cayley graph Γ2 of G2 with respect to S2.

The free product of G1 and G2, denoted G1 ? G2, is the group G with
presentation

G = 〈S1 ∪ S2 : R1 ∪R2〉.
Let Γ be the Cayley graph of G with respect to the generators S1 ∪ S2.

What does Γ look like? From the identity vertex in Γ, edges lead out into
two subgraphs, one of them a copy of Γ1 and one a copy of Γ2. At every

14

other (i.e. non-identity) vertex x of this first copy of Γ1, some edges lead out
into an independent copy of Γ2, glued to x by its identity vertex. Similarly,
every vertex of the first copy of Γ2 has a copy of Γ1 glued to it by the identity
vertex in Γ1.

Every non-identity vertex of each of these new copies of Γ2 has the identity
vertex of an independent copy of Γ1 glued to it, and every non-identity vertex
of each new copy of Γ1 has the identity vertex of a copy of Γ2 glued to it.
Continuing this gluing process indefinitely produces the Cayley graph of G.

To be precise, when we say a copy of Γ1 is glued to some vertex x by its
identity vertex, we mean that the identity vertex of Γ1 is identified with the
vertex x in the same way that the two vertices e1 and e2 are identified in the
connected sum (Γ1, e1)](Γ2, e2).

We will be able to form a somewhat more formal and more useful descrip-
tion of the Cayley graph Γ of G1 ? G2 by noting its resemblance to a tree,
and defining it in terms of its branches.

First, we make the following assertion about the elements of the free
product group G1 ?G2 (see [3]): Every non-identity element g of G1 ?G2 can
be written in a unique way as a product

g = g1g2 · · · gk

where each gi is either a word in the generators of G1 or a word in the
generators of G2, and for each i, gi and gi+1 do not come from the same
group. This is really just the statement that the product of G1 and G2 is
free; there are no relations involving elements from both factor groups, so
elements from G1 can’t ever cancel elements from G2, and vice versa.

This allows us to define a mapping

F : G −→ {G1, G2}

which associates to each g ∈ G the group which contributed its first non-
trivial factor. Specfically, if g = g1g2 · · · gk then

F (g) =

{
G1 if g1 ∈ G1

G2 if g1 ∈ G2.

We leave F undefined at the identity of G1 ? G2.
We will now make a provisional definition for the branches of the Cayley

graph Γ. We will define them as subgraphs, and describe them in terms of

15

their vertex sets. It will be understood that all possible edges are included
in these subgraphs. That is, whenever x and y are vertices in a subgraph
and there is an edge connecting x to y in the full graph Γ, that edge will be
included in the subgraph as well.

Let B1 be the subgraph of Γ whose vertex set comprises the identity
vertex, together with all vertices x whose corresponding elements gx ∈ G
satisfy

F (gx) = G1.

That is, B1 is the Cayley graph of the subset E1 ⊂ G made up of all the
elements of G1 ?G2 which “start out” in G1, together with the identity. (We
are using the term “Cayley graph” rather loosely here, but after all, this
definition is only temporary.) What does B1 look like? The identity vertex
sits in a copy of Γ1, because all the elements of G1 are in E1. The remaining
elements of E1 are of the form αg, where α is some nontrivial element of G1

and g is any element of G whose first non-trivial factor is in G2.
This means that for each non-identity element α of G1, the vertex cor-

responding to α in our copy of Γ1 has glued to it a subgraph which is iso-
morophic to the Cayley graph of the subset E2 ⊂ G given by

E2 = {g ∈ G : F (g) = G2} ∪ {identity}.

Let us to denote this subgraph B2. The answer to our question “What
does B1 look like?” is the following: B1 consists of a copy of Γ1 with a branch
B2 glued to each non-identity vertex.

The roles played by G1 and G2 in this discussion were entirely symmetric,
so by interchanging 1’s and 2’s, we can answer the question that obviously
follows: What does B2 look like? It is a copy of Γ2 with a branch B1 glued
to each non-identity vertex.

Figure 4 shows parts of the two branches of the free product graph which
we will eventually call C3 ? C4. Since C3 is a Cayley graph for Z/(3) and
C4 is a Cayley graph for Z/(4), we are thinking of this graph (for now) as
a Cayley graph of the group Z/(3) ? Z/(4). Branch 1 is a copy of C4 with
copies of branch 2 attached at all the non-identity vertices. Branch 2 is a
copy of C3 with copies of branch 1 attached at all the non-identity vertices.
The full Cayley graph, shown in figure 5, is the connected sum of the two
branches.

16

Branch 1 Branch 2

Figure 4: Branches of the graph C3 ? C4

4.2 The free product of Cayley graphs

This leads us to the following pair of recursive definitions for the branches
B1 and B2. These definitions may seem a little suspicious, since they define
B1 and B2 in terms of each other, but they do, in fact, completely describe
the subgraphs, and will suit our purposes nicely in the next section.

Let Γ1 and Γ2 be Cayley graphs of G1 and G2 respectively.

Definition 4.1 B1 is the graph comprising a single copy of Γ1 with an inde-
pendent copy of B2 glued, by its identity vertex, to every non-identity vertex
in the copy of Γ1.

Definition 4.2 B2 is the graph comprising a single copy of Γ2 with an inde-
pendent copy of B1 glued, by its identity vertex, to every non-identity vertex
in the copy of Γ2.

We will now define the free product of the two Cayley graphs Γ1 and Γ2

to be the result of gluing B1 and B2 together.

Definition 4.3 The free product Γ1 ? Γ2 is the graph

B1]B2

where the branches B1 and B2 are defined as above, and the root vertices are
taken to be the identity vertices.

17

Figure 5: Cayley graph of Z/(3) ? Z/(4)

Looking back at the definition of B1, we find another way to describe the
free product Γ1 ?Γ2. We state it as an alternative to definition 4.3, claiming,
of course, that the two definitions are equivalent.

Definition 4.4 The free product Γ1 ? Γ2 is the graph formed by gluing one
copy of B2, by its identity vertex, to each vertex of the graph Γ1.

If we start with B2, we get yet another equivalent definition.

Definition 4.5 The free product Γ1 ? Γ2 is the graph formed by gluing one
copy of B1, by its identity vertex, to each vertex of the graph Γ2.

Figure 6 shows part of the Cayley graph of Z/(3) ?Z/(4) as a copy of C4

with copies of branch 2 glued to each vertex.
We have yet to show that the free product graph Γ1 ? Γ2, as we have

defined it, is actually the Cayley graph Γ of the free product group G1 ? G2.

Theorem 4.6 Let G = G1 ? G2 and let Γ be the Cayley graph of G with
respect to the generators S1 ∪ S2. Let Γ1 and Γ2 be the Cayley graphs of G1

and G2 with respect to their respective generating sets. Then

Γ = Γ1 ? Γ2.

Proof. In the preceding discussion, we established that B1 is the subgraph
of Γ containing all the vertices corresponding to elements of the subset E1 ⊂

18

Figure 6: Part of C3 ? C4 with C4 at the center

G, and B2 is the subgraph of Γ containing all the vertices corresponding to
elements of the subset E2 ⊂ G. Since every element of G is in either E1 or
E2, and only the identity is in both, the graph formed by gluing B1 to B2 at
the identity vertex contains every vertex in Γ exactly once. It remains only
to see that Γ1 ? Γ2 contains all the edges in Γ. By our earlier understanding
about which edges are included in a subgraph, the only edges that could be
missing from Γ1 ? Γ2 are those which connect a non-identity vertex x in B1

to a non-identity vertex y in B2. But Γ contains no such edges, because
the group elements such as x and y always differ by an element of G which
contains factors from both G1 and G2. Such an element cannot be in the
symmetric generating set S1 ∪ S2. ¤

4.3 The free product of general graphs

The previous theorem notwithstanding, the fact that our original graphs Γ1

and Γ2 were Cayley graphs is becoming less and less important. In fact,
in defining the free product of two graphs, the only group-theoretic notion
that we used was that of the identity vertex. We can therefore define a free

19

product of two general graphs, provided we come up with a substitute for
the identity vertex. Such a substitute is built in to our notion of a rooted
graph.

Furthermore, though we will not stop to prove it, the free product op-
eration we have defined on Cayley graphs is associative (and commutative
as well, of course) so it makes sense to talk about the free product of any
finite number of Cayley graphs, and, indeed, of any number of general rooted
graphs. The following set of recursive definitions presents a generalization of
our definition of the free product of two Cayley graphs.

Let {(Γi, ei) : i = 1, . . . , k} be rooted graphs.

Definition 4.7 The branch Bi is the graph formed by gluing copies of every
Bj, j 6= i, by the root vertices, to each vertex of Γi except ei. The free product
Γ1 ? Γ2 ? · · · ? Γk is the graph

B1]B2] · · ·]Bk.

Again, we have an alternate form of this definition. Examining Bi as a
subgraph of the full free product, we find that its root vertex lives in a copy
of Γi which has copies of all the other Bj’s (that is, all those with j 6= i)
glued on at each non-root vertex (by the definition of Bi) and copies of all the
other Bj’s glued on at the root as well, from the connected-sum procedure.
Thus the following definition is equivalent to the one above:

Definition 4.8 The free product Γ1 ? Γ2 ? · · · ? Γk is the graph formed by
gluing copies of every Bj, j 6= i, by the root vertices, to each vertex of Γi.

4.4 Return generating function formulas

We are now ready to prove our main theorem.

Theorem 4.9 Let {(Γi, ei) : i = 1, . . . , k} be rooted graphs. Let Rei
(z) be

the return generating function for Γi at ei, and let Sei
(z) be the first-return

generating function for the branch Bi in the free product

Γ = Γ1 ? Γ2 ? · · · ? Γk.

Let Re(z) be the return generating function for Γ at the root e. Then

20

1.

Re(z) =
1

1−
∑

i

Sei
(z)

2. For each i,

Re(z) =
1

1−
∑

j 6=i

Sej
(z)

Rei




z

1−
∑

j 6=i

Sej
(z)


 .

Proof. The first assertion is simply an application of theorem 2.7, since Γ
is, by definition, the connected sum of its branches.

To prove the second assertion, we view Γ, as in definition 4.8, as a rooted
copy of Γi with a bouquet of all the branches Bj, j 6= i, glued on at each
vertex, including the root. If we focus our attention on this central copy of
Γi, then a closed walk at e looks as follows. Starting at the vertex e, it takes
some number of steps (possibly zero) in Γi, then leaves Γi, going into the
bouquet glued to some vertex x. Because the bouquets are all independent
and the closed walk has to get back to e, we know it must come back to x
before taking its next step in Γi. That is, it completes a closed walk at the
vertex x in the bouquet before continuing its journey through Γi.

Thus, every closed walk at e in Γ can be described as a closed walk at e in
the central copy of Γi, with some number of side trips into the bouquets glued
to all of Γi’s vertices. Furthermore, since the root vertex e in Γ corresponds
to the root ei in Γi, and the bouquets of other branches are glued to Γi by
their root vertices, we have the following one-to-one correspondences:




Closed walks at e
in the central copy

of Γi


 ←→

(
Closed walks at ei

in Γi

)

(
Side trips into

a bouquet

)
←→

(
Closed walks in

]
j 6=i

Bj

)

We consider the following schematic description of a closed walk at e:

W1ε1W2ε2W3ε3 · · ·WpεpWp+1.

21

Each εj stands for an edge in the central copy of Γi, and the sequence
ε1ε2 · · · εp describes a closed walk at e of length p, which always stays inside
the central copy of Γi. Each Wj stands for a side trip (possibly of length
zero) into the bouquet of branches glued to the jth vertex visited by the
closed walk ε1ε2 · · · εp.

Because of the correspondences noted above, though, we can also interpret
the sequence ε1ε2 · · · εp as a closed walk at ei in Γi itself, and each Wj as a
closed walk at the root of the connected sum of branches]

j 6=i
Bj. This makes it

easier to count the number of such schematic representations. In fact, writing
ρn for the coefficient of zn in the full return generating function Re(z), we
have

ρn =
n∑

p=0




number of closed walks
ε1ε2 · · · εp

at ei in Γi







number of sequences
W1,W2, . . . , Wp+1

totalling n− p steps


 .(13)

The closed walks in the first factor are counted by the return generating
function Rei

(z). To help count the closed walks in the second factor, let us
introduce the notation

T (i)(z)
def
=

1

1−
∑

j 6=i

Sej
(z)

. (14)

Then, by theorem 2.7, T (i)(z) is the return generating function for the bou-
quet]

j 6=i
Bj. If we write

T (i)(z) =
∞∑

n=0

τ (i)
n zn,

then τ
(i)
n is the number of possible closed “bouquet walks” W of length n.

In order to count sequences of Wj, we raise T (i)(z) to the kth power:

(T (i)(z))k =

(∞∑
n=0

τ (i)
n zn

)k

=
∞∑

n=0

(∑
γ1+γ2+···+γk=n

τ (i)
γ1

τ (i)
γ2
· · · τ (i)

γk

)
zn.

The coefficient of zn in (T (i)(z))k is thus seen to be the sum of the product

τ
(i)
γ1 τ

(i)
γ2 · · · τ (i)

γk , taken over all length-k ordered partitions γ1+γ2+· · ·+γk of n.

22

Side trips or bouquet walks are independent of one another, so by the multi-
plication principle, τ

(i)
γ1 τ

(i)
γ2 · · · τ (i)

γk is the number of sequences W1,W2, . . . , Wk

of closed bouquet walks whose lengths are γ1, γ2, . . ., and γk, respectively.
The coefficient of zn in (T (i)(z))k, which is the sum of this product over
all length-k ordered partitions of n, is therefore equal to the total number
of sequences W1,W2, . . . , Wk of closed bouquet walks such that the sum of
the lengths of the walks in the sequence is n. The number of sequences
W1,W2, . . . ,Wp+1 totalling n − p steps, which appears in equation (13), is
thus the coefficient of zn−p in the expansion of (T (i)(z))p+1.

Using the notation ρ
(i)
n for the coefficient of zn in the return generating

function Rei
(z), and recalling that ρ

(i)
n is equal to the number of closed walks

of length n at ei in Γi, we can now rewrite expression (13) in a somewhat
less wordy fashion:

ρn =
n∑

p=0

ρ(i)
p (coefficient of zn−p in (T (i)(z))p+1). (15)

Next we work from the other direction and expand T (i)(z) Rei
(z T (i)(z)).

We have

T (i)(z) Rei
(z T (i)(z)) = T (i)(z)

∞∑
p=0

ρ(i)
p zp (T (i)(z))p

=
∞∑

p=0

ρ(i)
p zp (T (i)(z))p+1.

For each p between 0 and n, the zn term in this product gets a contribution
equal to ρ

(i)
p times the coefficient of zn−p in the expansion of (T (i)(z))p+1.

Thus the coefficient of zn in T (i)(z) Rei
(z T (i)(z)) is equal to

n∑
p=0

ρ(i)
p (coefficient of zn−p in (T (i)(z))p+1).

This matches our earlier expression for ρn, and allows us to conclude
that the return generating function Re(z) is equal to T (i)(z) Rei

(z T (i)(z)).

Substituting
1

1−
∑

i6=j

Sj(z)
back in for T (i)(z) gives us just what we want:

23

Re(z) =
1

1−
∑

j 6=i

Sej
(z)

Rei




z

1−
∑

j 6=i

Sej
(z)


 .

¤
If k factor graphs are involved in a free product, this theorem gives k + 1

relations among the 2k + 1 quantities

Re1(z), Re2(z), . . . , Rek
(z), Se1(z), Se2(z), . . . , Sek

(z), Re(z).

If, for each factor graph (Γi, ei), we can find, by some other means, an ex-
pression for Rei

(z), then we have only k + 1 unknown functions, and exactly
as many relations among them. In theory, then, we can solve this system for
the return generating function Re(z).

Unfortunately, in all but the simplest examples, the algebra can become
quite daunting. In the next section, we present some of the simplest exam-
ples.

4.5 Examples II

The k-tree is the unique simply-connected graph with exactly k edges incident
at every vertex. Figure 7 shows a portion of the 3-tree. The k-tree is clearly
symmetric, and is subject to analysis using the tools in this paper, because
it is a free product. In fact, the k-tree is the product

F1 ? F1 ? · · · ? F1︸ ︷︷ ︸
k factors

.

We know that the return generating function for F1 is

1

1− z2
,

so by theorem 4.9, the return generating function Re(z) for the k-tree satisfies

Re(z) =
1

1− kS(z)
(16)

and

Re(z) =
1

1− (k − 1)S(z)


 1

1−
(

z
1−(k−1)S(z)

)2


 (17)

24

Figure 7: A portion of the 3-tree

where S(z) is the (as yet unknown) first return generating function for a
single branch of the k-tree. We can solve (16) and (17) for S(z) and Re(z).
The solutions are

S(z) =
1−

√
1− 4z2(k − 1)

2(k − 1)
(18)

Re(z) =
2(k − 1)

k − 2 + k
√

1− 4z2(k − 1)
(19)

See [5] for a discussion of the coefficients in this generating function.
For a second example which yields to this computational technique, we

consider the free product of two forks Fn and Fm. This is a simply-connected,
non-symmetric graph with n+m edges incident at the root vertex, and either
n+1 or m+1 vertices incident at every other vertex. Figure 8 shows a portion
of the graph F3 ? F2, with the root vertex at the center of the figure. The
return generating functions for Fn and Fm are

1

1− nz2
and

1

1−mz2

25

Figure 8: A portion of the graph F3 ? F2

respectively, so theorem 4.9 gives us the following set of equations:

Re(z) =
1

1− Sn(z)− Sm(z)

Re(z) =
1

1− Sn(z)


 1

1−m
(

z
1−Sn(z)

)2




Re(z) =
1

1− Sm(z)


 1

1− n
(

z
1−Sm(z)

)2




This system has the solution

Sn(z) =
1 + (n−m)z2 −

√
(m− n)2z4 − 2(m + n)z2 + 1

2

Sm(z) =
1 + (m− n)z2 −

√
(m− n)2z4 − 2(m + n)z2 + 1

2

Re(z) =
1√

(m− n)2z4 − 2(m + n)z2 + 1
.

26

Our computer tells us that the first few terms of the Taylor expansion of this
generating function are

1+
(m + n)z2+
(m2 + 4mn + n2)z4+
(m3 + 9m2n + 9mn2 + n3)z6+
(m4 + 16m3n + 36m2n2 + 16mn3 + n4)z8 + · · · .

It would be an interesting challenge to explain combinatorially the appear-
ance of the squares of the binomial coefficients in this expansion, if indeed
that is the pattern.

For our last example, consider the graph F1 ? C3, part of which is shown
in figure 9.

Figure 9: A portion of the graph F1 ? C3

We already know the return generating functions for the two factor graphs.
For F1, we have

Re(z) =
1

1− z2

and for C3 we have

Re(z) =
z − 1

2z2 + z − 1
.

27

We will denote by S2(z) and S3(z) the first return generating functions for the
branches of the free product graph. Theorem 4.9 gives us three expressions
for the return generating function Re(z) of the free product graph:

Re(z) =
1

1− S2(z)− S3(z)

Re(z) =
1

1− S2(z)




z
1−S2(z)

− 1

2
(

z
1−S2(z)

)2

+ z
1−S2(z)

− 1




Re(z) =
1

1− S3(z)


 1

1−
(

z
1−S3(z)

)2




Eliminating Re(z) for the moment, and suppressing the argument z, we get
the relations

S2(1− S3) = z2

S3(1− S2)− zS3 = 2z2

This system is quadratic in S2 or S3, and the solution is

S2(z) = −z2 + z − 1 +
√

z4 + 6z3 − 5z2 − 2z + 1

2

S3(z) = −z2 − z + 1−√z4 + 6z3 − 5z2 − 2z + 1

2(z − 1)

Re(z) =
2(z − 1)

z3 + z2 − z + (z − 2)
√

z4 + 6z3 − 5z2 − 2z + 1

Our computer says that the first eleven coefficients in the power series of
Re(z) (for n = 0 through n = 10) are 1, 0, 3, 2, 15, 20, 89, 168, 591, 1346,
and 4223.

5 Spectral results

In this section, we mention briefly how the return generating function is
used in spectral theory. We will not be rigorous about this; we include
this discussion just to demonstrate the usefulness of the return generating
function.

28

In the present section, we will need our return generating functions to
behave like functions and converge at least on some neighborhood of 0. They
do; for a proof of this fact and other technical matters, we refer the reader
to [4], from which we also quote the following important connection between
the return generating function and the spectrum of an infinite graph. If the
graph is symmetric, then our spectral expression for the return generating
function,

Re(z) =
1

N

∑
i

1

1− λiz
,

generalizes from the finite to the infinite case as

Re(z) =

∫
dµ(λ)

1− λz
,

where dµ is the spectral measure associated with the operator A. The func-
tion of a new variable w, given by

1

w
Re

(
1

w

)
=

∫
dµ(λ)

w − λ

is then the trace of the operator (wI −A)−1. But the trace of (wI −A)−1 is
the Green’s function G(w) for the operator A, which contains complete in-
formation about the spectrum of the graph. Loosely speaking, the spectrum
consists of the closure of the set of all numbers w for which G(w) is not a
real number.

On a symmetric graph, then, knowing Re(z), is equivalent to knowing
G(w), from which we can find out all we want to know about the graph’s
spectrum. We can use our earlier computation of the return generating func-
tion for the k-tree, for example, to verify the well-known fact (see [1]) that
the spectrum of the k-tree is the interval

[−2
√

k − 1, 2
√

k − 1].

The Green’s function for the k-tree is

G(w) =
1

w
Re

(
1

w

)

=
2(k − 1)

w(k − 2) + sgn(w)k
√

w2 − 4(k − 1)
,

29

which fails to produce a real number exactly when |w| < 2
√

k − 1.
We conclude by repeating McLaughlin’s calculation ([4], page 26) of the

spectrum of the graph F1 ? C3 (see figure 9). From the return generating
function

Re(z) =
2(z − 1)

z3 + z2 − z + (z − 2)
√

z4 + 6z3 − 5z2 − 2z + 1
,

we find the Green’s function to be

G(w) =
2(w − w2)

1 + w − w2 + (1− 2w)
√

1 + 6w − 5w2 − 2w3 + w4
.

The expression under the radical sign is negative in the two intervals
(

1−
√

13 + 8
√

2

2
,
1−

√
13− 8

√
2

2

)

and(
1 +

√
13− 8

√
2

2
,
1 +

√
13 + 8

√
2

2

)

and the entire denominator of G(w) is 0 at w = −2 and (changing the sign
of the radical) at w = 0. Thus the spectrum of F1 ? C3 is the union of the
closures of the two intervals with the two points −2 and 0.

References

[1] R. Brooks, “The spectral geometry of k-regular graphs,” J. Analyse Math.
20 (1992).

[2] M. Fisher, “On hearing the shape of a drum,” J. Combin. Theory 1 (1966)
pp 105–125.

[3] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory,
Dover Publications, 1976.

[4] J. C. McLaughlin, “Random walks and convolution operators on free
products,” Doctoral dissertation, New York University, 1986.

[5] G. Quenell, “Trace-formula methods in the spectral geometry of graphs,”
Doctoral dissertation, University of Southern California, 1992.

30

[6] A. White, Graphs, Groups, and Surfaces, North-Holland Publishing Com-
pany, 1973.

31

