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1 Introduction

A standard technique for estimating the eigenvalues of the Laplacian on a
compact Riemannian manifold M with bounded curvature is to pack the
manifold with disjoint geodesic balls. The smallest Dirichlet eigenvalues of
the Laplacian on the balls (which may be easier to estimate) can then be
used as lower bounds for certain eigenvalues of the Laplacian on M .

In this paper, we explore what happens when the same techniques are applied
to the problem of estimating eigenvalues of the adjacency operator on finite
graphs of bounded degree. In Theorem 7, we show how eigenvalues of the
adjacency operator on a finite graph Γ may be bounded in terms of the
biggest eigenvalues of the adjacency operator on “geodesic balls” in Γ. We
find explicit bounds for the eigenvalues on the balls (Theorem 6), and in
Theorem 8, we turn these into explicit estimates on certain eigenvalues of
the adjacency operator on Γ.

2 The setting: Linear algebra on Graphs

We begin by introducing the principal notions in the spectral theory of graphs
and recalling a few results we will need from linear algebra.

Let Γ be a connected, undirected graph with a finite number n of vertices.
We will denote the vertices x1, x2, . . . , xn. A function on Γ is a map from
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the vertex set of Γ to the real numbers. The set of functions on Γ forms an
n-dimensional vector space over R. A canonical basis for this space is made
up of the functions δ1, δ2, . . . δn, where

δi(xj) =

{
1 if i = j
0 otherwise.

There is also a canonical inner product on this function space. If f and g are
functions on Γ, define

〈f, g〉 =
n∑

i=1

f(xi)g(xi),

and note that the canonical basis is orthonormal with respect to this inner
product. We will denote the space of functions on Γ (now a Hilbert space)
as L2(Γ).

There is a natural self-adjoint linear operator on L2(Γ), called the adjacency
operator, and denoted A. It is defined by

(Af)(x) =
∑
y∼x

f(y),

where y ∼ x means the vertex y is joined to the vertex x by an edge. The
easy way to see that A is indeed self-adjoint is to observe that its matrix with
respect to the canonical basis is simply the adjacency matrix of Γ which, since
Γ is undirected, must be symmetric.

The sequence of eigenvalues of A forms the spectrum of Γ. The study of
spectral graph theory involves looking for relations between the spectrum of
a graph and its geometric properties. This is analogous to the field of spectral
geometry on manifolds, where the spectrum of another self-adjoint operator,
the Laplacian, is related to geometric features of a manifold. The analogy
is very close, because any reasonable definition of a “Laplacian” on a graph
(some operator that looks like heat diffusion) involves the adjacency operator
in an important way. Consider, for example, a graph Γ which is k-regular,
meaning that every vertex in Γ has degree k. A Laplacian operator ∆ on
such a graph, trying to look like minus the divergence of the gradient, might
be defined as

∆f(x) =
∑
y∼x

(f(x)− f(y)) (1)

= ((kI − A)f)(x), (2)
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where I denotes the identity operator on L2(Γ).

A basic result in spectral geometry is a theorem of Cheng [4], giving up-
per bounds on the eigenvalues of the Laplacian on a compact Riemannian
manifold M in terms of the diameter of M and curvature bounds on M . Intu-
itively, this result says that big manifolds have low fundamental frequencies.
Our purpose here is to formulate the graph-theory analogue to Cheng’s the-
orem, and derive lower bounds on the eigenvalues of the adjacency operator
on a finite graph Γ in terms of the diameter of Γ and bounds on the degrees
of its vertices. Our sample Laplacian in line (2) shows that the adjacency op-
erator has the opposite sign from the usual Laplacian, so that lower bounds
on eigenvalues of A are the correct analogue to upper bounds on eigenvalues
of ∆.

If a graph Γ is finite and k-regular, then the number k is in the spectrum of
Γ; the constant function is an eigenfunction for the value k. Furthermore, if
Γ is bipartite (meaning it contains no cycles of odd length) then the number
−k is also in the spectrum of Γ, corresponding to an eigenfunction with value
1 on half the vertices and −1 on the other half. A finite, k-regular graph is
called Ramanujan if every eigenvalue λ in its spectrum satisfies either |λ| = k
or |λ| ≤ 2

√
k − 1.

Among other things, our results will explain the significance of the num-
ber 2

√
k − 1 in this context, and clarify the assertion ([5]) that the second-

greatest eigenvalue of a finite, k-regular graph Γ approaches 2
√

k − 1 as Γ
gets large.

We conclude this section by recalling two results from linear algebra: the
variational characterization of eigenvalues and the Perron-Frobenius theorem.

Let A be a self-adjoint linear operator on an n-dimensional Hilbert space V ,
so that A has n real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn with corresponding
eigenvectors v1, v2, . . . , vn. Let v be a non-zero vector in V . The Rayleigh
quotient for v is the quotient 〈Av, v〉 / 〈v, v〉. Clearly, if v happens to be
an eigenvector vi of A, then the Rayleigh quotient for v is equal to λi. In
fact, each eigenvalue of A is an extreme value of the Rayleigh quotient over
an appropriate subspace of V . We will use this version of the variational
characterization of eigenvalues:
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Theorem (Rayleigh’s Principle) With notation as above, for each index
1 ≤ i ≤ n,

λi = max
v⊥Ti−1

〈Av, v〉
〈v, v〉 ,

where Ti−1 is the subspace of V spanned by the eigenvectors v1, v2, . . . , vi−1.

For a proof, see [9] or [6].

The Perron-Frobenius theorem is stated in terms of matrices rather than
operators.

A real matrix M = (mij) is called non-negative if each of its entries is non-
negative. A non-negative, square matrix M is called irreducible if for each
pair (i, j), there is a non-negative integer p such that the (i, j)th entry of Mp

is strictly positive. Since the (i, j)th entry of the pth power of the adjacency
matrix of a graph Γ is equal to the number of edge sequences of length p
connecting vertex i to vertex j, it is clear that the adjacency matrix of a
connected graph is irreducible.

For each i, the row sum ri of a matrix M = (mij) is given by

ri =
∑

j

mij. (3)

Theorem (Perron-Frobenius) Let M be a non-negative, square matrix,
and suppose M is irreducible. Let rmin and rmax be the minimum and max-
imum row sums of M , respectively. There is a unique eigenvector v of M
all of whose entries are positive. The eigenvalue λ corresponding to v is the
largest eigenvalue of M and satisfies rmin ≤ λ ≤ rmax.

For a proof, see [8].

3 Trees and spherical functions

For each integer k ≥ 3, let Γk denote the k-tree, that is, the simply-connected
infinite graph each of whose vertices has degree k. The k-tree is the graph-
theoretic analogue of a symmetric space. The number k plays the role of
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negative curvature, in that the number of vertices in a ball of fixed radius
in a k-tree (formal definitions to follow) increases with k, just as the volume
of a unit ball in a symmetric space of negative curvature increases as the
curvature gets “more negative.”

Figure 1: Part of the 3-tree

Our reference point in spectral graph theory is the family of spherical eigen-
functions of the adjacency operator on Γk. These are analogous to the spher-
ical eigenfunctions of the Laplacian on a symmetric space which one con-
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structs using Bessel or Legendre functions (see [3]).

Given λ ∈ (0, 2
√

k − 1) and x0 ∈ Γk, the spherical eigenfunction Sλ on Γ
centered at x0 is the function satisfying

1. ASλ = λSλ

2. Sλ(x0) = 1

3. Sλ(x) depends only on the distance from x to x0.

We claim that there is a unique such function for each choice of λ, x0, and
k ≥ 3, and will demonstrate this by constructing the function.

Since the value of Sλ(x) depends only on the distance from x to x0, we can
consider Sλ as a function on the non-negative integers, and construct it as
follows. Conditions (1) and (2) above imply that Sλ satisfies the difference
equation

Sλ(r − 1) + (k − 1)Sλ(r + 1) = λSλ(r) (4)

for r ≥ 1, with initial conditions given by

Sλ(0) = 1 (5)

kSλ(1) = λ. (6)

If we write

Sλ(r) = c1x
r
1 + c2x

r
2, (7)

where c1 and c2 are coefficients to be determined later, then the difference
equation (4) implies that x1 and x2 must satisfy the quadratic equation
1 + (k − 1)x2 = λx. Thus we have

x1,2 =
λ±

√
λ2 − 4(k − 1)

2(k − 1)
. (8)
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Since we have assumed 0 < λ < 2
√

k − 1, equation (8) implies that x1 and
x2 are complex numbers with modulus 1/

√
k − 1. This suggests writing

x1,2 =
1√

k − 1


λ±

√
λ2 − 4(k − 1)

2
√

k − 1


 . (9)

Let

θ = arg


λ +

√
λ2 − 4(k − 1)

2
√

k − 1


 (10)

so that 0 < θ < π
2
. Then

Sλ(r) = c1x
r
1 + c2x

r
2 (11)

=
1√

k − 1
r

(
c1e

irθ + c2e
−irθ

)
(12)

=
1√

k − 1
r (c3 cos rθ + c4 sin rθ) . (13)

Using the initial conditions Sλ(0) = 1 and Sλ(1) = λ/k, we can determine
that c3 = 1 and c4 = k−2

k
cot θ. Thus our spherical eigenfunction on the

k-tree is represented by the function

Sλ(r) =
1√

k − 1
r

(
cos rθ +

k − 2

k
cot θ sin rθ

)
. (14)

Reading Sλ as a function of a continuous variable r, we observe that it has the
form of a sine wave with period 2π/θ and exponentially decaying amplitude.
If we rewrite Sλ as

Sλ(r) =
c5√

k − 1
r sin(rθ + α), (15)

equate this with our other expression for Sλ, and use the addition formula
for sine, we can determine that the phase shift α is given by
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tan α =
k

k − 2
tan θ (16)

with 0 < α < π
2
, and that c5 = csc α.

Figure 2 shows some curves y = Sλ(x) for k = 3. The values of λ, given in
the order in which the curves cross the x-axis, are 0.5, 1, 1.5, 2, and 2.5.

2 4 6 8 10

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Figure 2: Graphs of some Sλ functions

We summarize our investigation of spherical eigenfunctions in the following
theorem.

Theorem 1 Let k ≥ 3 be an integer and let λ ∈ (0, 2
√

k − 1). Let

θ = arg


λ +

√
λ2 − 4(k − 1)

2
√

k − 1


 .
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Then the function

Sλ(r) =
csc α√
k − 1

r sin(rθ + α), (17)

where α = arctan

(
k

k − 2
tan θ

)
, is a spherical λ-eigenfunction of A on Γk,

in the sense that a function ϕ on Γk given by ϕ(x) = Sλ(dist(x, x0)), for
some fixed x0, satisfies Aϕ = λϕ and Sλ(x0) = 1.

We remark that the restriction λ ∈ (0, 2
√

k − 1) is artificial. An eigenfunc-
tion Sλ can be constructed for any λ ∈ R by making only minor changes
to the development outlined above. See [2] or [7] for the details. In this
paper, we will need only the functions Sλ with λ ∈ (0, 2

√
k − 1) and unless

otherwise specified, any λ we discuss will lie in this interval.

4 Zeroes of spherical functions

Regarding Sλ once again as a function of a continuous variable r, we now
investigate where the first zero of Sλ occurs. That is, we wish to identify the
least positive r such that Sλ(r) = 0. Figure 2 suggests that the first positive
root of Sλ increases with λ. We establish this in the following theorem.

Lemma 2 Let Sλ denote the spherical eigenfunction with eigenvalue λ on
the k-tree. For each r0 > 1, there is a real number λ ∈ (0, 2

√
k − 1) such

that Sλ(r) > 0 for 0 ≤ r < r0 and Sλ(r0) = 0.

Proof We use the form of Sλ given in Theorem 1, that is, Sλ is equal to some
positive exponential times the function sin(rθ + α). By the construction, we
know Sλ(0) = 1, so sin(0 + α) is strictly positive. Since θ and α are both
positive, the first zero of sin(rθ + α) occurs when rθ + α = π. Solving for r,
we find that the first zero of Sλ occurs when
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r =
π − α

θ
. (18)

From the definition of θ (equation (10)), we get

cos θ =
λ

2
√

k − 1
, (19)

which shows that θ is a continuous, monotone decreasing function of λ for
0 < λ < 2

√
k − 1. As we noted earlier, the range of θ is the interval (0, π

2
).

The relation

tan α =
k

k − 2
tan θ (20)

(equation (16)) shows that α is a continuous, monotone increasing function
of θ for 0 < θ < π

2
, and thus that α is a continuous, monotone decreasing

function of λ.

Now the “first-zero” function r = (π − α)/θ is a continuous, monotone in-
creasing function of λ on 0 < λ < 2

√
k − 1. Furthermore, as λ increases

toward 2
√

k − 1, both θ and α decrease to 0, and the value of r at the first
zero increases without bound. As λ decreases toward 0, both θ and α increase
to π

2
, and the value of r at the first zero decreases toward 1. Since the range

of the “first-zero” function is (1,∞) and the function is monotone, there is
an inverse function giving, for each r ∈ (1,∞) the unique value of λ between
0 and 2

√
k − 1 such that r is the first zero of Sλ.

We will use the notation Λ(r) for the function constructed in Lemma 2. That
is, for each r > 1, the number r will be the first zero of SΛ(r). In the next
lemma, we derive an estimate on Λ(r).

Lemma 3 For r > 1,

Λ(r) > 2
√

k − 1 cos
(

π

r + 1

)
.
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Proof Let λ = Λ(r), so that the first zero of Sλ occurs at r = (π − α)/θ,
where θ and α are the angles corresponding to the eigenvalue λ. Since θ and
α both lie in (0, π

2
) and tan α = k

k−2
tan θ, we know tan α > tan θ, and thus

that α > θ. This yields

r =
π − α

θ
<

π − θ

θ
. (21)

Solving for θ gives

θ <
π

r + 1
. (22)

Taking the cosine of both sides changes the direction of the inequality, giving

cos θ > cos
(

π

r + 1

)
. (23)

Now cos θ =
λ

2
√

k − 1
, so we have

λ

2
√

k − 1
> cos

(
π

r + 1

)
, (24)

from which the result follows.

We will need one more result concerning the functions Sλ, which we state in
the following lemma.

Lemma 4 Let r0 ≥ 1 be an integer and let λ = Λ(r0). Then the function Sλ

is monotone decreasing on the integers 0, 1, . . . , r0.

Proof We know that Sλ is positive on the integers 0, 1, . . . , r0 − 1, that
Sλ(0) = 1, and that Sλ satisfies the difference equation (4).

We proceed by induction, first noting that the difference equation for Sλ

implies that Sλ(1) = λ/k. Since λ < 2
√

k − 1, we get

Sλ(1) <
2
√

k − 1

k
. (25)
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For k ≥ 3, the expression on the right is always less than 1. Thus we have
established the base case, that Sλ(1) < Sλ(0).

Now assume that 1 ≤ r ≤ r0 − 1 and Sλ(r) < Sλ(r − 1). The difference
equation for Sλ implies that

(k − 1)Sλ(r + 1) = λSλ(r)− Sλ(r − 1). (26)

Since Sλ(r− 1) > Sλ(r) and λ < 2
√

k − 1, equation (26) gives the inequality

(k − 1)Sλ(r + 1) < (λ− 1)Sλ(r)

< (2
√

k − 1− 1)Sλ(r)

Sλ(r + 1) <
2
√

k − 1− 1

k − 1
Sλ(r).

For k ≥ 3, the coefficient
2
√

k − 1− 1

k − 1
is always less than 1, and since Sλ(r)

is positive (because r ≤ r0 − 1), we have established that Sλ(r + 1) < Sλ(r).

5 Graph-theoretic balls

Next we examine the graph-theoretic analogues of geodesic balls in symmetric
spaces and on manifolds.

We define the distance between two vertices x and y on a graph Γ to be the
number of edges traversed in the shortest path connecting x to y. We denote
the distance from x to y as dist(x, y). In a connected graph, dist(x, y) is
always defined, and it is easy to check that it is a valid distance function.

Let x0 be a vertex in a graph Γ, and let n be a non-negative integer. The
ball of radius n about x0, denoted B(x0, n), is the subgraph of Γ induced by
the set of vertices x in Γ with dist(x0, x) ≤ n. (The subgraph induced by a
set S of the vertices of Γ is a graph whose vertices are the elements of S and
whose edges are all the edges of Γ which have both endpoints in S.)

Our reference graphs will be balls in the k-tree. Let x0 be a vertex in Γk,
and let n be a non-negative integer. Because of the symmetry of Γk, the ball
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of radius n around x0 is isomorphic to the ball of radius n around any other
vertex in Γk. The shape of the ball does of course depend on k, and so we
will use the notation V k

n to denote the ball of radius n in Γk.

The quantity of interest to us is the largest eigenvalue of the adjacency op-
erator on V k

n , which we will denote λ1(V
k
n ).

Theorem 5 For n ≥ 1 and k ≥ 3,

λ1(V
k
n ) > 2

√
k − 1 cos

(
π

n + 2

)
.

Proof Let x0 be the center of V k
n , and define a test function ϕ on V k

n by

ϕ(x) = Sλ(dist(x, x0)), (27)

where λ = Λ(n + 1). We claim that ϕ is an eigenfunction of the adjacency
operator A on V k

n with eigenvalue λ. To verify this, we examine Aϕ(x) in
three cases.

1. x = x0. Then Aϕ(x) is a sum of ϕ(y) over the k vertices y which are
joined to x0. The value of ϕ at each such vertex is Sλ(1), and we get
Aϕ(x) = kSλ(1) = λSλ(0) = λϕ(x).

2. 1 ≤ r = dist(x, x0) ≤ n − 1. The neighbors of x include one vertex y
at distance r − 1 from x0 and k − 1 vertices z at distance r + 1 from
x0. Thus

Aϕ(x) = ϕ(y) + (k − 1)ϕ(z)

= Sλ(r − 1) + (k − 1)Sλ(r + 1)

= λSλ(r)

= λϕ(x).

3. dist(x, x0) = n. The vertex x is joined to only one vertex y in V k
n , and

dist(x0, y) = n− 1. We also know that Sλ(n + 1) = 0, so we can write

Aϕ(x) = ϕ(y)

= Sλ(n− 1)

= Sλ(n− 1) + (k − 1)Sλ(n + 1)

= λSλ(n)

= λϕ(x).
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Since λ is an eigenvalue of the adjacency operator on V k
n , we must have

λ1(V
k
n ) ≥ λ = Λ(n + 1) > 2

√
k − 1 cos

(
π

n + 2

)
. (28)

The idea of using Sλ to define a test function on a graph is called transplanta-
tion. This technique is very flexible, and can be applied to graphs other than
Γk. In the next theorem, for example, we allow the graph Γ to be multiply
connected, and we even relax the k-regularity requirement.

A graph Γ will be said to have minimal degree k if every vertex of Γ has
degree greater than or equal to k.

Theorem 6 Let Γ be a graph with minimal degree k ≥ 3. Let x0 be a vertex
in Γ, let n be a positive integer, and let B = B(x0, n) denote the ball around
x0 of radius n. Then the greatest eigenvalue of the adjacency operator on B,
denoted λ1(B), satisfies

λ1(B) > 2
√

k − 1 cos
(

π

n + 2

)
. (29)

Proof As in the proof of Theorem 5, we begin by defining a function ϕ on
B by

ϕ(x) = Sλ(dist(x, x0)), (30)

where λ = Λ(n + 1). Since distances on Γ are well-defined, our function ϕ is
well-defined, and since all points in B are within n units of x0, ϕ is strictly
positive on B.

We claim that the Rayleigh quotient for ϕ, 〈Aϕ,ϕ〉 / 〈ϕ, ϕ〉, is greater than or
equal to λ. Because the Rayleigh quotient for ϕ is a lower bound for λ1(B),
and λ (by Theorem 3) is greater than 2

√
k − 1 cos( π

n+2
), we will be finished

once we have established this claim.

The Rayleigh quotient for ϕ is greater than or equal to λ because Aϕ is,
pointwise, greater than or equal to λϕ. To see this, we examine Aϕ(x) in
three cases.
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1. x = x0. Then Aϕ(x) is the sum of ϕ(y) over all the vertices y which
are joined to x0 by an edge. Since the degree of x0 is at least k, this is
a sum over at least k vertices y, and the value of ϕ at each such vertex
is Sλ(1). Since Sλ(1) is positive, the sum is at least as large as kSλ(1),
which is equal to λSλ(0), which, in turn, is equal to λϕ(x0).

2. 1 ≤ r = dist(x, x0) ≤ n− 1. Among the neighbors of x, there must be
one vertex y whose distance to x0 is r − 1. All the other neighbors z
of x must lie within r + 1 units of x0, and there must be at least k − 1
of them. Since Sλ is decreasing, ϕ must decrease with distance from
x0, and therefore the value of ϕ at each z is greater than or equal to
Sλ(r + 1). This, along with the fact that Sλ is positive in the relevant
domain, gives us the following chain of inequalities.

Aϕ(x) = ϕ(y) +
∑
z

ϕ(z)

≥ Sλ(r − 1) +
∑
z

Sλ(r + 1)

≥ Sλ(r − 1) + (k − 1)Sλ(r + 1)

= λSλ(r)

= λϕ(x).

3. dist(x, x0) = n. In this case, x must have at least one neighbor y whose
distance to x0 is n − 1. Any other neighbors z of x satisfy ϕ(z) > 0.
Also, Sλ(n + 1) = 0, by our choice of λ. These observations justify the
following chain of inequalities.

Aϕ(x) = ϕ(y) +
∑
z

ϕ(z)

≥ ϕ(y)

= Sλ(n− 1) + (k − 1) · 0
= Sλ(n− 1) + (k − 1)Sλ(n + 1)

= λSλ(n)

= λϕ(x).
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We have established that Aϕ(x) ≥ λϕ(x) for each x ∈ B, and we know that
ϕ(x) > 0 for each x ∈ B, so

〈Aϕ, ϕ〉 =
∑

x∈B

Aϕ(x)ϕ(x)

≥ ∑

x∈B

λϕ(x)ϕ(x)

= λ 〈ϕ, ϕ〉 ,

showing that the Rayleigh quotient for ϕ is indeed greater than λ.

We remark here that if B itself has minimal degree k1, then the Perron-
Frobenius theorem guarantees that λ1(B) ≥ k1. However a ball B in a graph
Γ with minimum degree k can easily have vertices on its frontier with degree
less than k. The balls V k

n , for example, always contain vertices of degree 1.

6 Eigenvalue estimates

We will say that two balls B1 and B2 in a graph Γ are edge-disjoint if the
vertex set of B1 is disjoint from that of B2 and there is no edge in Γ joining
any vertex of B1 to any vertex of B2.

Theorem 7 Let Γ be a finite graph. Let B1, B2, . . . , Bm be balls in Γ which
are pairwise edge-disjoint. Then the mth largest eigenvalue of the adjacency
operator on Γ, denoted λm(Γ), satisfies

λm(Γ) ≥ min
i

λ1(Bi),

where λ1(Bi) denotes the largest eigenvalue of the adjacency operator on the
subgraph Bi.

Proof Let ϕ1, . . . , ϕm−1 be a set of eigenfunctions corresponding to the
eigenvalues λ1, . . . , λm−1 of the adjacency operator A on Γ. Because A is
self-adjoint, we know that the ϕi can be chosen so that they are orthogonal,
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and thus they span an m− 1-dimensional subspace Tm−1 of L2(Γ). The
eigenvalue λm is characterized by

λm = max
ψ⊥Tm−1

〈Aψ, ψ〉
〈ψ, ψ〉 . (31)

We will construct a test function from the eigenfunctions of the adjacency
operators on all the balls Bi. For now, let Ai denote the adjacency operator
on the ball Bi. Let ψi denote an eigenfunction corresponding to the first
eigenvalue λ1(Bi) of the operator Ai on each Bi. Extend each function ψi

to a function ψ̃i on all of Γ by setting ψ̃i(x) = 0 for x /∈ Bi. Because the
balls Bi are disjoint, the support of ψ̃i is disjoint from the support of ψ̃j if
i 6= j, so the functions ψ̃i are all orthogonal to one another. The subspace of
L2(Γ) spanned by the ψ̃i is therefore m-dimensional, and so it must contain
a function which is orthogonal to Tm−1. That is, there are coefficients γi such
that the function

ψ̃ =
m∑

i=1

γiψ̃i (32)

is orthogonal to every function in Tm−1. The Rayleigh quotient of ψ̃i will
therefore be a lower bound for λm(Γ).

To estimate this Rayleigh quotient, we observe first that for each i, the
equality

〈
Aψ̃i, ψ̃i

〉
= 〈Aiψi, ψi〉 holds, where A is the adjacency operator on

all of Γ, and Ai is the adjacency operator on just Bi. This fact, from which it
follows that

〈
Aψ̃i, ψ̃i

〉
is actually equal to λ1(Bi), can be verified as follows.

〈
Aψ̃i, ψ̃i

〉
=

∑

x∈Γ

∑

y ∼ x
y ∈ Γ

ψ̃i(y)ψ̃i(x)

=
∑

x∈Bi

∑

y ∼ x
y ∈ Bi

ψ̃i(y)ψ̃i(x) (supp(ψ̃i) = Bi)

=
∑

x∈Bi

∑

y ∼ x
y ∈ Bi

ψi(y)ψi(x)

= 〈Aψi, ψi〉 .
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We next make use of the fact that the Bi are edge-disjoint to show that〈
Aψ̃i, ψ̃j

〉
= 0 for i 6= j. We have

〈
Aψ̃i, ψ̃j

〉
=

∑

x∈Γ

∑
y∼x

ψ̃i(y)ψ̃j(x)

=
∑

x∈Bj

∑
y∼x

ψ̃i(y)ψ̃j(x).

But Bi and Bj are edge-disjoint, so y ∼ x and x ∈ Bj imply that y /∈ Bi,

and thus that ψ̃i(y) = 0. Thus
〈
Aψ̃i, ψ̃j

〉
= 0.

And now we will compute the Rayleigh quotient for ψ̃ in two parts. First
the numerator:

〈
Aψ̃, ψ̃

〉
=

〈
A

∑

i

γiψ̃i,
∑

j

γjψ̃j

〉

=
∑

i,j

γiγj

〈
Aψ̃i, ψ̃j

〉

=
∑

i

γ2
i

〈
Aψ̃i, ψ̃i

〉

=
∑

i

λ1(Bi)γ
2
i

〈
ψ̃i, ψ̃i

〉
.

In computing the denominator, we will use the fact that the functions ψ̃i are
mutually orthogonal.

〈
ψ̃, ψ̃

〉
=

〈∑

i

γiψ̃i,
∑

j

γjψ̃j

〉

=
∑

i,j

γiγj

〈
ψ̃i, ψ̃j

〉

=
∑

i

γ2
i

〈
ψ̃i, ψ̃i

〉
.

For each i, let ζi = γ2
i

〈
ψ̃i, ψ̃i

〉
, and let Z =

∑
ζi. Then the Rayleigh quotient

for ψ̃ is equal to
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∑

i

ζi

Z
λ1(Bi). (33)

Since the coefficients ζi/Z are all positive and add up to 1, this Rayleigh
quotient must be greater than min

i
λ1(Bi), and the proof is complete.

In the next theorem, we will bring into play our explicit estimates of the
eigenvalues λ1(Bi), assuming bounded degree, to derive explicit lower bounds
on λm(Γ) for m ≥ 2. For the moment, however, let us examine what The-
orem 7 says about λ1(Γ). Since all the balls in the set {B1} are pairwise
edge-disjoint (there are no pairs of them), B1 may be taken to be any ball in
Γ, and the theorem tells us that λ1(Γ) ≥ λ1(B1), where B1 is any ball in Γ. If
the degree of Γ is bounded below by k and the radius of B1 is n, Theorem 6
implies that λ1(B1) > 2

√
k − 1 cos(π/(n + 2)). We may take n as large as

we like (since B1 will never intersect another ball, no matter what), so we
can conclude that λ1(Γ) ≥ 2

√
k − 1. Unfortunately, this estimate is easily

beaten by the Perron-Frobenius theorem, which says that if the degree of Γ
is bounded below by k, then λ1(Γ) is at least k. If, however, we can find a B1

which is slightly smaller than Γ and which has a minimal degree k1 greater
than k, then Theorem 7 applied with B1 may yield a better estimate on λ1

than Perron-Frobenius theorem does when applied to Γ directly.

The diameter of a finite graph Γ is the maximum of dist(x, y) over all pairs
of vertices x and y in Γ. In the next theorem, we estimate the eigenvalues of
the adjacency operator on Γ in terms of the diameter of Γ.

Theorem 8 Let Γ be a finite graph with diameter d and minimal degree
k ≥ 3. Then for 2 ≤ m ≤ 1 + d/4, the mth eigenvalue of the adjacency
operator on Γ satisfies

λm(Γ) > 2
√

k − 1 cos
(

π

r + 1

)
,

where r is the greatest integer less than or equal to
d

2(m− 1)
.
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Proof We claim there are m vertices in Γ, separated pairwise by distances of
at least 2r. If not, then the distance between any two vertices in Γ less than
(m−1)(2r) ≤ d, contradicting the fact that the diameter of Γ is d. Choose m
such vertices x1, x2, . . . , xm, and for each one, let Bi = B(xi, r−1). The balls
Bi are edge-disjoint, because if x ∈ B(xi, r − 1) and y ∈ B(xj, r − 1) (with
i 6= j) and x and y are joined by an edge, then the distance between xi and xj

is less than or equal to 2(r− 1)+1 = 2r− 1, contrary to our choice of xi and
xj. Applying Theorem 7, we conclude that λm(Γ) ≥ mini λ1(Bi). Theorem 6

then tells us that each λ1(Bi) is greater than 2
√

k − 1 cos
(

π

r + 1

)
, and the

result follows.

One consequence of Theorem 8 for large (but finite) k-regular graphs may
be seen as follows. The largest eigenvalue of A on such a graph is k, and
Theorem 8 gives the lower bound for λ2(Γ) as

λ2(Γ) > 2
√

k − 1 cos
(

π

r + 1

)
(34)

where r is essentially d/2. As d gets large, the right side of (34) increases
toward 2

√
k − 1, so if Γ1, Γ2, . . . is a sequence of k-regular graphs such that

lim
n→∞ diam(Γn) = ∞, (35)

we can conclude that

lim inf
n→∞ λ2(Γn) ≥ 2

√
k − 1. (36)

Even for moderately large k-regular graphs, Theorem 8 does not allow λ2 to
be very far inside the interval [−2

√
k − 1, 2

√
k − 1]. The k-regular graphs

which, in spite of this crowding effect, have λ2 and all other eigenvalues
except ±k in the given interval are honored with the name Ramanujan.

7 Boundary case: radius zero

We can get an interesting application of Theorem 7 using balls of radius 0.
Mostly for notational convenience, all our previous theorems excluded this
boundary case, but it is easy to state what happens when balls of radius zero
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are considered. Briefly, we will need to define Λ(1) (it turns out to be 0),
and so we will need to look at the function Sλ when λ = 0. Here are the
boundary cases of our previous theorems, given in the order in which the
theorems originally appeared.

Theorem 9 (Compare with Theorem 1) Let k ≥ 3 be an integer. Then the
function

S0(r) =
1√

k − 1
r sin

(
rπ

2
+

π

2

)

is a spherical 0-eigenfunction of A on Γk.

Proof This is just a matter of plugging λ = 0 into the development of Sλ

in section 3. The value of θ turns out to be π
2
, as does the value of α.

Lemma 10 (Compare with Lemma 2) S0(r) is the unique spherical eigen-
function on the k-tree which takes on the value 0 at r = 1.

Proof The difference equation defining Sλ requires λSλ(0) = kSλ(1). Since
Sλ(1) = 0 and Sλ(0) = 1, we conclude that λ = 0.

Lemma 11 (Compare with Lemma 3) Λ(1) = 0.

Proof Immediate.

A ball of radius 0 is a single vertex x. Since no other vertices are connected
to x, the adjacency operator on a ball of radius 0 is the zero operator, and
its only (and therefore largest) eigenvalue is 0. Thus the boundary case of
Theorem 5 is

Theorem 12 λ1(V
k
0 ) = 0.

Packing balls of radius 0 into a finite graph yields the following boundary
case of Theorem 8.
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Theorem 13 Let Γ be a finite graph with minimum degree k ≥ 3 and diam-
eter d. Let n be the greatest integer less than or equal to 1 + d/2. Then at
least n eigenvalues of the adjacency operator on Γ are non-negative. Let p be
the greatest integer less than or equal to 1 + d/4. Then at least p eigenvalues
of the adjacency operator on Γ are positive.

Proof Γ must contain n vertices separated from one another by distance at
least 2. If not, then the diameter of Γ is less than 2(n − 1), and therefore
less than d, contrary to hypothesis. We consider these n vertices as n balls
of radius 0, and apply Theorems 7 and 12 to conclude that λn(Γ) ≥ 0. The
second assertion is immediate from Theorem 8.
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Figure 3: V 3
3 in the 3-tree
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