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An undirected graph is called k-regular if exactly k edges meet at each
vertex. The eigenvalues of the adjacency matrix of a finite, k-regular graph Γ
(assumed to be undirected and connected) satisfy |λi| ≤ k, with k occurring
as a simple eigenvalue. Let λ(Γ) denote the maximum of {|λi| : |λi| 6= k},
and let N denote the number of vertices in Γ. The diameter of Γ can be
bounded in terms of N and λ(Γ). Chung ([5]) and Sarnak ([7]) have derived
the estimate

diam(Γ) ≤ arccosh(N − 1)

arccosh
(

k
λ(Γ)

) + 1,

which will be our Theorem 2.
Following Brooks ([2]), we define graph-theoretic spherical functions Sλ

on the universal cover of Γ, and apply the techniques of the Selberg pre-trace
formula to write a spectral expression for the number of paths of length n
joining two vertices x and y in Γ. Calling this number Kn(x, y), we have, as
Lemma 9.4,

Kn(x, y) = k(k − 1)n−1
∑

i

Sλi
(n)ϕi(x)ϕi(y)

where {ϕi} is an orthonormal set of eigenfunctions for the adjacency operator,
in correspondence with the eigenvalues {λi}.
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We then use the spectral expression for Kr(x, y), where r ≥ 1 is the
injectivity radius of Γ, along with the ideas used to prove Theorem 2, to
derive a new diameter estimate in Theorem 3:

diam(Γ) ≤
arccosh

(
N

k(k−1)r−1 − 1
)

arccosh
(

k
λ(Γ)

) + 2r + 1.

Finally, in Section 12, we argue that the bound given by Theorem 3 is
usually stronger than the bound in Theorem 2.

1 The adjacency matrix

Let Γ be a k-regular, connected, undirected graph with a finite number N of
vertices. We assume Γ has no loops or multiple edges, so that its adjacency
matrix A is a symmetric, irreducible zero-one matrix with no ones on the
diagonal and exactly k ones in each row and column.

We will use the notation “x ∼ y” to mean the vertices x and y are joined
by an edge. Also “x ∈ Γ” will be taken to mean x is a vertex in Γ.

A walk in Γ is a sequence x0, x1, . . . , xn of vertices such that xi−1 ∼ xi for
i = 1, . . . , n. The vertices x0 and xn are the endpoints of the walk and the
number n is its length. Let Wn(x, y) denote the number of walks of length n
whose endpoints are x and y. Then it is easy to see that

Wn(x, y) = [An]xy (1)

where we have used the notation [M ]xy for the entry of the matrix M in the
row associated with the vertex x and the column associated with the vertex
y.

A path in Γ is a walk x0, x1, . . . , xn such that xi 6= xi−2 for i = 2, . . . , n.
That is to say, a path does not double back by traversing the same edge twice
in succession. We will let Kn(x, y) denote the number of paths of length n
whose endpoints are x and y. An expression for Kn in terms of A is somewhat
more complicated than (1), and will be the subject of a later section.

The distance between two vertices x and y, denoted dist(x, y), is the
length of the shortest walk whose endpoints are x and y. We are assuming
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that Γ is connected, so all distances are finite. The diameter of Γ is the
maximum of dist(x, y) over all pairs (x, y).

A walk or path x0, x1, . . . , xn is closed if x0 = xn. A graph Γ is said to
be bipartite if it has no closed walks of odd length. In terms of our present
notation, Γ is bipartite if and only if Wn(x, x) = 0 for all odd n and all
vertices x. Because Γ is connected, the matrix A is irreducible, and the
condition just stated is equivalent to the period of the matrix A being even.
Since we have

[A2]xx = k 6= 0 (2)

for all vertices x, we can say even more:

Lemma 1.1 The period of A is 2 if Γ is bipartite, and 1 if Γ is not bipartite.

Because A is symmetric, all its eigenvalues are real. Furthermore, the
k-regularity of Γ means that all the row sums of A are equal to k. Lemma
1.1 and the Perron-Frobenius theorem then imply

Lemma 1.2 Let A be the adjacency matrix of a finite, connected, k-regular
graph Γ. Then

(a) the number k is a simple eigenvalue of A;

(b) the number −k is a simple eigenvalue of A if and only if Γ is bipartite;

(c) all other eigenvalues λ of A satisfy |λ| < k.

Let λ(Γ) denote the absolute value of the next-largest eigenvalue of A,
that is

λ(Γ) = max{|λ| : λ ∈ Spec(A), |λ| 6= k}. (3)
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2 The adjacency operator

By a function on Γ, we will mean a real-valued function on the vertices of
Γ. If Γ has N vertices, then space of such functions is isomorphic, as a real
inner-product space, with RN . If ϕ and ψ are two functions on Γ, we will
write their inner product with angle brackets:

〈ϕ, ψ〉 =
∑
x∈Γ

ϕ(x)ψ(x). (4)

If ϕ is a function on Γ, then we can write ϕ as a column vector

ϕ(x) = (ϕ(x1) ϕ(x2) · · · ϕ(xN))t (5)

where xi is the vertex associated with the ith row of the adjacency matrix A.
We then obtain a new function Aϕ by matrix multiplication. In fact, the ith

entry of the column vector Aϕ is given by

[Aϕ]i =
∑

xj∼xi

ϕ(xj). (6)

In more operator-like notation, we have

(Aϕ)(x) =
∑
y∼x

ϕ(y). (7)

We will take expression (7) as our definition of the adjacency operator A
on the space of functions on a graph.

We have already remarked that the spectrum of A (as a matrix, but also
as an operator) is a subset of the real line. In the sequel, we will write the
spectrum of A as {λ0, λ1, . . . , λN−1} with

k = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1. (8)

Furthermore, because A is self-adjoint (it is represented by a symmetric
matrix), there exists a corresponding orthonormal basis of eigenfunctions of
A, which we will write

{ϕ0, ϕ1, . . . , ϕN−1}. (9)

4



3 Aside: the Laplacian

A more familiar operator in the field of spectral geometry is the Laplacian
operator, ∆, which appears so prominently in the heat equation and the wave
equation. A reasonable way to define a Laplacian operator on a graph is

(∆ϕ)(x) =
∑
y∼x

(ϕ(x)− ϕ(y)) , (10)

where ϕ is a function on the graph.
If Γ is k-regular, the right-hand side of (10) is easily seen to be

kϕ(x) −
∑
y∼x

ϕ(y) (11)

so that

∆ = kI − A, (12)

where I represents the identity operator.
It follows that the spectrum of the adjacency matrix A is the image of

the spectrum of ∆ under an affine transformation. Thus the number λ(Γ),
loosely speaking, represents the “fundamental frequency” of the graph Γ. The
analogy is not perfect, because λ(Γ) may correspond to either the lowest or
the highest frequency among the nontrivial steady-state solutions to the wave
equation on Γ. Nonetheless, we will treat λ(Γ) as an “observable,” and base
our diameter estimates on this number.

4 The spectrum on a bipartite graph

If Γ is bipartite then, as the term suggests, we can partition the vertices of
Γ into two sets with the property that no two vertices of the same set are
joined by an edge. Let us arbitrarily assign a parity to each of these two sets:
sgn(x) will be “even” if x belongs to the even set and “odd” if x belongs to
the odd set.
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Lemma 4.1 Suppose Γ is bipartite. Let ϕ be a function on Γ such that
Aϕ = λϕ for some real number λ. Define a new function ψ by

ψ(x) = (−1)sgn(x)ϕ(x). (13)

Then Aψ = −λψ.

Proof.

(Aψ)(x) =
∑
y∼x

ψ(y) (14)

=
∑
y∼x

(−1)sgn(y)ϕ(y) (15)

= −
∑
y∼x

(−1)sgn(x)ϕ(y) (16)

= −(−1)sgn(x)(Aϕ)(x) (17)

= −λ(−1)sgn(x)ϕ(x) (18)

= −λψ(x) (19)

¤

Corollary 4.2 Let Γ be a k-regular bipartite graph with adjacency spectrum

k = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−2 > λN−1 = −k. (20)

Let {ϕ0, ϕ1, . . . , ϕN−1} denote an orthonormal set of eigenfunctions corre-
sponding to {λ0, λ1, . . . , λN−1}. Then for each i ∈ {0, 1, . . . , N − 1},

(a) λN−1−i = −λi;

(b) we may take ϕN−1−i(x) = (−1)sgn(x)ϕi(x);

(c) in this case,

ϕN−1−i(x)ϕN−1−i(y) = (−1)dist(x,y)ϕi(x)ϕi(y). (21)
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Proof. Parts (a) and (b) follow from Lemma 4.1 and the existence of an
orthonormal basis of eigenfunctions. From part (b), we have

ϕN−1−i(x)ϕN−1−i(y) = (−1)sgn(x)+sgn(y)ϕi(x)ϕi(y). (22)

To prove (c), we observe that sgn(x) = sgn(y) if and only if dist(x, y) is
even. ¤

5 Wn(x, y)

We write the walk-counting function Wn(x, y) in terms of the numbers λi

and the functions ϕi.

Lemma 5.1

Wn(x, y) =
N−1∑
i=0

λn
i ϕi(x)ϕi(y). (23)

Proof. We have already observed that

Wn(x, y) = [An]xy. (24)

Let Φ be the N × N matrix whose columns are the eigenfunctions ϕi.
The following are immediate

(a) Φ is unitary: Φ−1 = Φt.

(b) Φ diagonalizes A: ΦAΦt = D, where D is the N ×N diagonal matrix
with diagonal entries λ0, λ1, . . . , λN−1.

Then

[An]xy = [ΦtDnΦ]xy (25)

=
N−1∑
i=0

λn
i ϕi(x)ϕi(y). (26)

¤
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6 A spectral diameter estimate

In addition to what we know about the spectrum of A on a k-regular graph,
we will make use of two facts about the eigenfunctions ϕi. We state them as

Lemma 6.1 For each vertex x ∈ Γ,

(a)

ϕ0(x) =
1√
N

; (27)

(b)

N−1∑
i=0

ϕ2
i (x) = 1. (28)

Proof. The constant function 1 satisfies A1 = λ01, where λ0 = k is a
simple eigenvalue. Thus ϕ0 is a multiple of the constant function, and since
〈ϕ0, ϕ0〉 = 1, we must have ϕ0 ≡ 1√

N
, establishing part (a).

Part (b) follows from the orthonormality of the ϕi. If Φ is the N × N
matrix whose columns are the ϕi, then Φ is unitary, so that its rows, as well
as its columns, are orthonormal. A row of ϕ takes the form

(ϕ0(x) ϕ1(x) · · · ϕN−1(x)) (29)

and part (b) is just the assertion that this row vector has norm 1. ¤
Our first spectral diameter estimate, which will set the pattern for those

to follow, is found in [4].

Theorem 1 Let Γ be a k-regular graph with N vertices.

(a) If Γ is not bipartite then

diam(Γ) ≤ log(N − 1)

log k − log λ(Γ)
+ 1 (30)
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(b) If Γ is bipartite then

diam(Γ) ≤ log(N − 2)− log 2

log k − log λ(Γ)
+ 2 (31)

Proof. Choose x and y such that dist(x, y) = diam(Γ). If n is a non-negative
integer less than dist(x, y), then clearly Wn(x, y) = 0. By Lemma 5.1, then,

0 =
N−1∑
i=0

λn
i ϕi(x)ϕi(y). (32)

We know that λ0 = k and ϕ0(x) = ϕ0(y) = 1/
√

N , so we can write

0 =
kn

N
+

N−1∑
i=1

λn
i ϕi(x)ϕi(y) (33)

which implies that

kn

N
=

∣∣∣∣∣
N−1∑
i=1

λn
i ϕi(x)ϕi(y)

∣∣∣∣∣ . (34)

Assume now that Γ is not bipartite. Then (λ(Γ))n is the greatest element
of the set {|λn

i | : i = 1, . . . , N − 1}. Applying the triangle inequality, the
observation just made about λ(Γ), and finally the Cauchy-Schwarz inequality,
we obtain, from (34),

kn

N
≤

N−1∑
i=1

|λn
i ||ϕi(x)ϕi(y)| (35)

≤ (λ(Γ))n

N−1∑
i=1

|ϕi(x)ϕi(y)| (36)

≤ (λ(Γ))n

(
N−1∑
i=1

ϕ2
i (x)

) 1
2
(

N−1∑
i=1

ϕ2
i (y)

) 1
2

. (37)
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Lemma 6.1 implies that

N−1∑
i=1

ϕ2
i (y) =

N−1∑
i=1

ϕ2
i (x) = 1− 1

N
. (38)

Putting this into (37), we get

kn

N
≤ (λ(Γ))n

(
1− 1

N

)
(39)

which yields the upper bound

n ≤ log(N − 1)

log k − log λ(Γ)
. (40)

This is true for each n less than dist(x, y) = diam(Γ), and we conclude
that

diam(Γ) ≤ log(N − 1)

log k − log λ(Γ)
+ 1. (41)

Now suppose Γ is bipartite. If the parity of n is different from the parity
of dist(x, y), then parts (a) and (c) of Corollary 4.2 imply that

λn
N−iϕN−i(x)ϕN−i(y) = −λn

i ϕi(x)ϕi(y) (42)

for each i. In this case the right-hand side of equation (32) is trivially zero,
and the equation yields no information. If, on the other hand, the parity of
n agrees with the parity of dist(x, y), then for each i,

λn
N−1−iϕN−1−i(x)ϕN−1−i(y) = λn

i ϕi(x)ϕi(y) (43)

and equation (32) may be decomposed thus:

0 = 2
kn

N
+

N−2∑
i=1

λn
i ϕi(x)ϕi(y). (44)

10



Imitating our previous computation ((35) - (37)), we write

2
kn

N
=

∣∣∣∣∣
N−2∑
i=1

λn
i ϕi(x)ϕi(y)

∣∣∣∣∣ (45)

≤ (λ(Γ))n

N−2∑
i=1

|ϕi(x)ϕi(y)| (46)

≤ (λ(Γ))n

(
N−2∑
i=1

ϕ2
i (x)

) 1
2
(

N−2∑
i=1

ϕ2
i (y)

) 1
2

(47)

Using the fact that ϕN−1(x) = ±ϕ0(x) and both parts of Lemma 6.1, we
find that

N−2∑
i=1

ϕ2
i (y) =

N−2∑
i=1

ϕ2
i (x) = 1− 2

N
. (48)

Plugging this into (47), we continue:

2
kn

N
≤ (λ(Γ))n

(
1− 2

N

)
(49)

kn

(λ(Γ))n
≤ N − 2

2
(50)

n ≤ log(N − 2)− log 2

log k − log λ(Γ)
. (51)

We had to assume that n was less than diam(Γ) and of the same parity
as diam(Γ), so we can conclude that

diam(Γ) ≤ log(N − 2)− log 2

log k − log λ(Γ)
+ 2. (52)

¤
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7 Polynomial diameter estimates

We can improve on the estimate in Theorem 1 by making better use of our
observation that

0 =
N−1∑
i=0

λn
i ϕi(x)ϕi(y) (53)

for any non-negative integer n less than dist(x, y). Let x and y be such that
dist(x, y) = diam(Γ), and let {pn : n = 0, 1, 2, . . .} be a family of polynomials
such that the degree of pn is n. Then it follows from (53) that

0 =
N−1∑
i=0

pn(λi)ϕi(x)ϕi(y) (54)

for each n less than diam(Γ).
Proceeding as in the proof of Theorem 1, we write this as

0 = pn(λ0)ϕ0(x)ϕ0(y) +
N−1∑
i=1

pn(λi)ϕi(x)ϕi(y). (55)

We know that λ0 = k and ϕ0 ≡ 1√
N

, and let us assume that pn(k) will be

positive for each n. Then (55) implies that

pn(k)

N
=

∣∣∣∣∣
N−1∑
i=1

pn(λi)ϕi(x)ϕi(y)

∣∣∣∣∣ . (56)

Next we apply the triangle inequality to get

pn(k)

N
≤

N−1∑
i=1

|pn(λi)| |ϕi(x)ϕi(y)|. (57)

As in the proof of Theorem 1, our diameter estimate will turn out the
be the least n for which this inequality does not hold. Thus it is to our
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advantage to make the left side of (57) as large as possible for each n, while
keeping the right side small. If Γ is not bipartite (and for now we will assume
that this is the case), then |λi| ≤ λ(Γ) for each λi appearing on the right side
of (57). We wish to select a family {pn} of polynomials, then, such that

(a) pn(k) is large for each n, and

(b) |pn(λ)| is bounded for |λ| ≤ λ(Γ).

The Chebychev polynomials (see [1])

Tn(x) = cosh(n arccosh(x)) (58)

satisfy

|Tn(x)| ≤ 1 for |x| ≤ 1 (59)

and increase quite rapidly for x > 1. We do reasonably well by our criteria
above by setting

pn(λ) = Tn

(
λ

λ(Γ)

)
(60)

= cosh

(
n arccosh

(
λ

λ(Γ)

))
. (61)

Then |pn(λi)| ≤ 1 in each term on the right side of (57), and the inequality
implies that

pn(k)

N
≤

N−1∑
i=1

|ϕi(x)ϕi(y)|. (62)

As before, we use the Cauchy-Schwarz inequality and Lemma 6.1 to get

pn(k)

N
≤

(
N−1∑
i=1

ϕ2
i (x)

) 1
2
(

N−1∑
i=1

ϕ2
i (y)

) 1
2

(63)

≤
(

1− 1

N

)
, (64)
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so that

pn(k) ≤ N − 1. (65)

Since pn(k) = cosh(n arccosh( k
λ(Γ)

)) and everything in sight is greater
than 1, it follows that

n arccosh

(
k

λ(Γ)

)
≤ arccosh(N − 1), (66)

and finally that

n ≤ arccosh(N − 1)

arccosh
(

k
λ(Γ)

) . (67)

This is true, in particular, for n = diam(Γ)− 1, and we have proved part
(a) of the following theorem. Part (b) depends on a minor modification of
the same argument.

Theorem 2 Let Γ be a k-regular, connected graph with N vertices.

(a) If Γ is not bipartite then

diam(Γ) ≤ arccosh(N − 1)

arccosh
(

k
λ(Γ)

) + 1. (68)

(b) If Γ is bipartite then

diam(Γ) ≤ arccosh
(

N
2
− 1

)

arccosh
(

k
λ(Γ)

) + 2. (69)

Sarnak uses the same technique, but expresses the result slightly dif-
ferently in [7]. Chung presents a more general form of this theorem, not
requiring k-regularity, in [5].
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8 Polynomial estimates are better

Note that the approach we have used to prove Theorem 2 yields exactly the
result in Theorem 1 if, instead of using the Chebychev polynomials, we define
the family {pn} by

pn(λ) =

(
λ

λ(Γ)

)n

. (70)

In fact, since this family of polynomials also satisfies

|pn(λ)| ≤ 1 for |λ| ≤ λ(Γ), (71)

we could write a proof of Theorem 1 identical to our proof of Theorem 2
except in the last step, where we would use logarithms, rather than the
inverse hyperbolic cosine, to dig out the number n.

In Theorem 1, the diameter bound is one more than the greatest n such
that

(
k

λ(Γ)

)n

≤ N − 1 (72)

and in Theorem 2 the bound is one more than the greatest n such that

cosh

(
n arccosh

(
k

λ(Γ)

))
≤ N − 1. (73)

To verify that the estimate in Theorem 2 is actually stronger than the
estimate in Theorem 1, then, we need only verify that

cosh

(
n arccosh

(
k

λ(Γ)

))
≥

(
k

λ(Γ)

)n

(74)

for each n. Since k > λ(Γ), this requirement may be phrased more succinctly
as

cosh(n arccosh(x)) ≥ xn for x > 1, n ≥ 0. (75)

This is true, and may be verified as follows.
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Lemma 8.1 Let Tn(x) = cosh(n arccosh(x)). Let x > 1. Then

(a) T0(x) = x0; T1(x) = x1.

(b) If n > 1 then Tn(x) > xn.

Proof. Both statements in part (a) are immediate from the definitions. For
part (b), we wish to show that, under the stated conditions,

cosh(n arccosh(x)) > xn. (76)

Since both sides of this inequality are greater than 1 (by hypothesis), we can
take the inverse hyperbolic cosine and find that the required inequality is
equivalent to

n arccosh(x) > arccosh(xn). (77)

We will show that the expression

n arccosh(x) − arccosh(xn) (78)

is positive for x > 1 and n > 1. Recalling (or looking up) the derivative of
arccosh, we write (78) as

n

∫ x

1

1√
t2 − 1

dt − n

∫ x

1

tn−1

√
t2n − 1

dt. (79)

We combine the two integrals to get

n

∫ x

1

√
t2n − 1 − tn−1

√
t2 − 1√

(t2 − 1)(t2n − 1)
dt. (80)

The denominator in the integrand is positive throughout the interval
(1, x), so we need only verify that the numerator is positive. (Since we already
know the antiderivative, we may safely assume that the integral converges.)
The numerator is positive if

√
t2n − 1 >

√
t2n − t2n−2. (81)

Since n > 1 and t > 1, the subtrahend t2n−2 is greater than 1, so the
inequality holds.

¤
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9 Kn(x, y)

Next we turn to the function Kn(x, y), which counts the number of paths of
length n whose endpoints are x and y.

Let Γ be a k-regular graph with N vertices, and let Γk be the k-tree, which
is the universal cover of Γ. The adjacency operator on the space of functions
on Γk will be denoted by A, and is defined analogously to the adjacency
operator on Γ, by expression (7).

Lemma 9.1 Let x ∈ Γk, λ ∈ R. Then there is a unique function Sλ,x on Γk

such that

(a) Sλ,x(x) = 1

(b) ASλ,x = λSλ,x

(c) Sλ,x(y) = Sλ,x(z) if dist(x, y) = dist(x, z).

Proof. Let C(x, r) denote the set of vertices {y ∈ Γk : dist(x, y) = r}. If
r = 0, then the set C(x, r) contains just the vertex x. If r ≥ 1 then C(x, r)
contains exactly k(k − 1)r−1 vertices.

By condition (c), the function Sλ,x is constant on each set C(x, r). We
will use the notation Sλ(r) to denote the common value of Sλ,x on C(x, r).

Condition (a) fixes Sλ(0). The value of Sλ(1) is determined by

λ = λSλ(0) (82)

= (ASλ,x)(x) (83)

=
∑
y∼x

Sλ,x(y) (84)

= kSλ(1) (85)

implying that Sλ(1) = λ/k.
If r ≥ 1 and y ∈ C(x, r) then we have

ASλ,x(y) = Sλ,x(z1) + (k − 1)Sλ,x(z2) (86)

where z1 is some vertex in C(x, r − 1) and z2 is some vertex in C(x, r + 1).
Thus
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λSλ(r) = Sλ(r − 1) + (k − 1)Sλ(r + 1). (87)

This determines Sλ(r+1) in terms of Sλ(r) and Sλ(r−1), and we conclude
that Sλ is uniquely determined for all integers r ≥ 0, and thus that Sλ,x is
determined on all of Γk. ¤

We extract from this proof the following corollary:

Corollary 9.2 Sλ(r) is an rth-degree polynomial in λ. Moreover, for r ≥ 1,
k(k − 1)r−1Sλ(r) is a monic rth-degree polynomial in λ. If r is even, then
Sλ(r) is even, and if r is odd, then Sλ(r) is odd.

Proof. In the preceding proof, we remarked that

Sλ(0) = 1 (88)

Sλ(1) =
1

k
λ (89)

establishing our present claim for r = 0 and r = 1. For r ≥ 2, we refer to
(87), and adjust the index to rewrite the equation this way:

(k − 1)Sλ(r) = λSλ(r − 1)− Sλ(r − 2). (90)

Multiplying through by k(k − 1)r−2, we obtain

k(k − 1)r−1Sλ(r) =

λk(k − 1)r−2Sλ(r − 1)− k(k − 1)r−2Sλ(r − 2).
(91)

By induction, k(k−1)r−2Sλ(r−1) is a monic, (r−1)th-degree polynomial
in λ with parity equal to that of r − 1. Therefore the first term on the right
in (91) is a monic, rth-degree polynomial in λ with the same parity as r. The
second term on the right is a polynomial of degree r− 2. Its parity (given by
r − 2) is also the same as the parity of r. The sum of the two terms is thus
monic of degree r, with parity equal to the parity of r, as claimed. ¤

We note that Brooks, in [2], solves the difference equation (87), and the
resulting closed-form expression yields much information about the behavior
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of the function Sλ. We will not need such detailed information here, however,
and will make do with the basic properties of Sλ given in the preceding lemma
and corollary.

Let ϕ be a function on Γ such that Aϕ = λϕ. Let ϕ̃ denote the lift of ϕ
to the universal cover, Γk. Let x ∈ Γ and pick some lift x̃ of x. Let ϕ̃] denote
the spherical average of ϕ̃ about x̃, that is

ϕ̃](x̃) = ϕ̃(x̃) (92)

ϕ̃](ỹ) =
1

k(k − 1)r−1

∑

ỹ∈C(x̃,r)

ϕ̃(ỹ) for dist(x̃, ỹ) = r ≥ 1. (93)

Then we have

Lemma 9.3

ϕ̃] = ϕ(x)Sλ,x̃. (94)

Proof. Clearly the value of ϕ̃](ỹ) depends only on the distance from x̃ to ỹ,
that is, ϕ̃] is constant on each set C(x̃, r).

We claim that

Aϕ̃] = λϕ̃] (95)

where A is the adjacency operator on Γk, as given by (7). To see this, consider
(Aϕ̃])(ỹ), where dist(x̃, ỹ) = r ≥ 1. Because Γk is simply connected, we have

(Aϕ̃])(ỹ) = ϕ̃](z̃1) + (k − 1)ϕ̃](z̃2) (96)

where z̃1 is any element of C(x̃, r−1) and z̃2 is any element of C(x̃, r+1). We
sum this equation, letting ỹ run through C(x̃, r), which contains k(k− 1)r−1

vertices.

∑

ỹ∈C(x̃,r)

(Aϕ̃])(ỹ) = (97)

k(k − 1)r−1(Aϕ̃])(ỹ) = k(k − 1)r−1ϕ̃](z̃1) + k(k − 1)rϕ̃](z̃2) (98)
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= (k − 1)
∑

z̃∈C(x̃,r−1)

ϕ̃(z̃) +
∑

z̃∈C(x̃,r+1)

ϕ̃(z̃) (99)

=
∑

ỹ∈C(x̃,r)

(Aϕ̃)(ỹ) (100)

= λ
∑

ỹ∈C(x̃,r)

ϕ̃(ỹ) (101)

= λk(k − 1)r−1ϕ̃](ỹ). (102)

From (102) and the left side of (98), we conclude that

(Aϕ̃])(ỹ) = λϕ̃](ỹ) (103)

for dist(x̃, ỹ) ≥ 1.
If dist(x̃, ỹ) = 0, then ỹ = x̃, and we get

(Aϕ̃])(x̃) =
∑

ỹ∈C(x̃,1)

ϕ̃](ỹ) (104)

=
∑

ỹ∈C(x̃,1)

ϕ̃(ỹ) (105)

= (Aϕ̃)(x̃) (106)

= λϕ̃(x̃) (107)

= λϕ̃](x̃) (108)

and we have established our claim (95).
If ϕ̃(x̃) is not zero, then the function

f(ỹ) =
1

ϕ̃(x̃)
ϕ̃](ỹ) (109)

depends only on dist(x̃, ỹ), and satisfies Af = λf and f(x̃) = 1. Therefore,
by Lemma 9.1, we have

f = Sλ,x̃ (110)

so
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ϕ̃] = ϕ̃(x̃)Sλ,x̃ (111)

= ϕ(x)Sλ,x̃. (112)

If ϕ̃(x̃) = 0, then ϕ̃](x̃) = 0. Using this fact and an induction argument
based on (103), it is easy to show that ϕ̃] is identically zero, and so the lemma
holds in this case, as well. ¤

Consider the function kn on Γk × Γk given by

kn(x̃, ỹ) =

{
1 if dist(x̃, ỹ) = n
0 otherwise

(113)

Let Kn be the sum of the covering-map images of kn, that is to say, let
Kn : Γ× Γ → R by

Kn(x, y) =
∑
g∈G

kn(x̃, gỹ) (114)

where x̃ is some lift of x, ỹ is some lift of y, and G is the group of covering
transformations of Γk over Γ.

The sum on the right in (114) contains a 1 for each lift ỹ of y in C(x̃, n).
The unique path in Γk from x̃ to each ỹ projects down to a path of length n
from x to y in Γ. Conversely, the lift of any path of length n from x to y in
Γ, when the lift is started at x̃, will terminate at some lift of y in C(x̃, n).

This establishes that the function Kn(x, y) is equal to the number of
paths of length n from x to y. We now have ready the machinery which will
allow us to write a spectral expression, in the spirit of the Selberg pre-trace
formula, for Kn.

We want to express Kn in this form:

Kn(x, y) =
∑
i,j

aijϕi(x)ϕj(y) (115)

for some coefficients aij. Integrating both sides of (115) against the function
ϕk(y), we get
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∑
y∈Γ

Kn(x, y)ϕk(y) =
∑
i,j

aijϕi(x)
∑
y∈Γ

ϕj(y)ϕk(y) (116)

=
∑
i,j

aijϕi(x)δj,k (117)

=
∑

i

aikϕi(x). (118)

Turning our attention to the expression on the left side of (116), we let
ϕ̃k be the lift of ϕk to Γk and use the definition of Kn, (114), to write the
expression as a summation over vertices in Γk:

∑
y∈Γ

Kn(x, y)ϕk(y) =
∑
y∈Γ

∑
g∈G

kn(x̃, gỹ)ϕ̃k(ỹ) (119)

where x̃ is some lift of x and ỹ denotes some lift of each y ∈ Γ. Because ϕ̃k

is G-invariant, we can express the right side of (119) as

∑
y∈Γ

∑
g∈G

kn(x̃, gỹ)ϕ̃k(gỹ). (120)

As g runs through G and y through Γ, the image gỹ hits every vertex in
Γk exactly once, so we get

∑
y∈Γ

Kn(x, y)ϕk(y) =
∑
ỹ∈Γk

kn(x̃, ỹ)ϕ̃k(ỹ). (121)

By the definition of kn, (113), this is equal to

∑

ỹ∈C(x̃,n)

ϕ̃k(ỹ). (122)

We now assume n ≥ 1 and apply definition (93) to see that this is equal
to

k(k − 1)n−1ϕ̃]
k(ỹ) (123)
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where ỹ is any vertex in C(x̃, n). By Lemma 9.3,

ϕ̃]
k = ϕk(x)Sλk,x̃, (124)

so that (122) is equal to

k(k − 1)n−1ϕk(x)Sλk
(n). (125)

Substituting this back into (116), we get

k(k − 1)n−1ϕk(x)Sλk
(n) =

∑
i

aikϕi(x) (126)

which implies that aik = 0 if i 6= k and

aii = k(k − 1)n−1Sλi
(n). (127)

We have shown:

Lemma 9.4 For n ≥ 1,

Kn(x, y) = k(k − 1)n−1
∑

i

Sλi
(n)ϕi(x)ϕi(y). (128)

10 Broken paths

Let x and y be two vertices in Γ, and consider the expression

∑
z∈Γ

Kn(x, z)Km(z, y). (129)

The term corresponding to a single z in the sum is equal to the number
of paths of length n from x to z times the number of paths of length m from
z to y. In other words, it is the number of walks from x to y which are made
up of a path of length n ending at z followed by a path of length m from z to
y. The entire expression, then, is equal to the number of walks from x to y
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of length m + n which do not double back, except possibly at the nth vertex,
counting from x.

We can use this idea to derive a spectral diameter estimate for k-regular
graphs which depends explicitly on the injectivity radius.

We define the girth of a graph to be the length of its shortest closed
path (excluding closed paths of length zero). Let g be the girth of Γ and
let r = bg−1

2
c. Then the ball of radius r about any vertex in Γ is simply

connected, and therefore isomorphic to a ball of radius r in the k-tree. We
will call r the injectivity radius of Γ.

Lemma 10.1 Let Γ be a k-regular graph with N vertices, injectivity radius
r, and adjacency spectrum {λ0, λ1, . . . , λN−1}. Let {ϕ0, ϕ1, . . . , ϕN−1} be cor-
responding orthonormal eigenfunctions. Then for each vertex x ∈ Γ,

N−1∑
i=0

S2
λi

(r)ϕ2
i (x) =

1

k(k − 1)r−1
. (130)

Proof. Consider the expression

∑
y∈Γ

Kr(x, y)Kr(y, x) (131)

This is equal to the number of walks, beginning and ending at x, com-
prising a path of length r followed by a second path of length r. Because the
ball of radius r about x is simply connected, the second path must coincide
(except for orientation) with the first. The vertex where the two paths join
together is at a distance r from x, and each vertex at this distance from x
determines exactly one walk of length 2r, beginning and ending at x. Thus
expression (131) is equal to the number of vertices at distance r from x.

The ball of radius r about x is isometric with a ball of radius r in the
k-tree, so the number of such vertices is k(k − 1)r−1.

We apply Lemma 9.4:

k(k − 1)r−1

=
∑
y∈Γ

Kr(x, y)Kr(y, x)

= k2(k − 1)2(r−1)
∑
y∈Γ

N−1∑
i=0

Sλi
(r)ϕi(x)ϕi(y)

N−1∑
j=0

Sλj
(r)ϕj(y)ϕj(x)

(132)
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so that

k(k − 1)r−1

= k2(k − 1)2(r−1)

N−1∑
i,j=0

Sλi
(r)Sλj

(r)ϕi(x)ϕj(x)
∑
y∈Γ

ϕi(y)ϕj(y).
(133)

The functions ϕi are orthonormal, so

∑
y∈Γ

ϕi(y)ϕj(y) = δi,j, (134)

and the right side of (133) becomes a summation over a single index:

k(k − 1)r−1 = k2(k − 1)2(r−1)

N−1∑
i=0

S2
λi

(r)ϕ2
i (x). (135)

We divide each side by k2(k − 1)2(r−1) to complete the proof. ¤

11 Injectivity radius and diameter

We are now ready to state and prove our third diameter estimate, which
depends explicitly on the injectivity radius of the graph.

Theorem 3 Let Γ be a k-regular, connected graph with N vertices and in-
jectivity radius r ≥ 1.

(a) If Γ is not bipartite, then

diam(Γ) ≤
arccosh

(
N

k(k−1)r−1 − 1
)

arccosh
(

k
λ(Γ)

) + 2r + 1. (136)

(b) If Γ is bipartite, then

diam(Γ) ≤
arccosh

(
N

2k(k−1)r−1 − 1
)

arccosh
(

k
λ(Γ)

) + 2r + 2. (137)
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Proof. Let x0 and y0 be vertices in Γ such that dist(x0, y0) = diam(Γ). Let n
be a positive integer such that n+2r < dist(x0, y0). Consider the expression

∑
x,y∈Γ

Kr(x0, x)Wn(x, y)Kr(y, y0). (138)

This is equal to the number of walks from x0 to y0 comprising a path of
length r followed by a walk of length n and then a second path of length r.
The total length of such a walk is n + 2r. But the distance from x0 to y0 is
greater than n + 2r, so there are no such walks, and the expression must be
equal to zero.

Using the spectral expansions of Kr and Wn in Lemmas 9.4 and 5.1
respectively, we conclude that

0 =

∑
x,y∈Γ

N−1∑
i=0

Sλi
(r)ϕi(x0)ϕi(x)

N−1∑
j=0

λn
j ϕj(x)ϕj(y)

N−1∑

l=0

Sλl
(r)ϕl(y)ϕl(y0)

(139)

where we have divided out the constant factors k(k− 1)r−1. Sorting out this
multiple summation, we get

0 =
N−1∑

i,j,l=0

Sλi
(r)ϕi(x0)λ

n
j Sλl

(r)ϕl(y0)
∑
x∈Γ

ϕi(x)ϕj(x)
∑
y∈Γ

ϕj(y)ϕl(y).
(140)

The functions ϕi are orthonormal, so

∑
x∈Γ

ϕi(x)ϕj(x) = δi,j and
∑
y∈Γ

ϕj(y)ϕl(y) = δj,l (141)

and the entire summation collapses to a single index:

0 =
N−1∑
i=0

S2
λi

(r)λn
i ϕi(x0)ϕi(y0). (142)
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This holds for each exponent n less than dist(x0, y0) − 2r, so, summing
over n, we obtain

0 =
N−1∑
i=0

S2
λi

(r)pn(λi)ϕi(x0)ϕi(y0) (143)

where pn is any polynomial of degree n < dist(x0, y0)− 2r. We set

pn(λ) = cosh

(
n arccosh

(
λ

λ(Γ)

))
. (144)

Assume that Γ is not bipartite. We write (143) as

0 = pn(λ0)S
2
λ0

(r)ϕ0(x0)ϕ0(y0)

+
N−1∑
i=1

pn(λi)S
2
λi

(r)ϕi(x0)ϕi(y0).
(145)

All the factors in the first term on the right are known: λ0 = k, Sλ0 is
constantly equal to 1, and ϕ0 ≡ 1√

N
. Plugging these values in, we determine

that

pn(k)

N
=

∣∣∣∣∣
N−1∑
i=1

pn(λi)S
2
λi

(r)ϕi(x0)ϕi(y0)

∣∣∣∣∣ . (146)

Because Γ is not bipartite, we have |λi| ≤ λ(Γ) for i = 1, 2, . . . , N − 1, so
that

|pn(λi)| ≤ 1 for i = 1, 2, . . . , N − 1. (147)

By the triangle inequality, then, we get

pn(k)

N
≤

N−1∑
i=1

|Sλi
(r)ϕi(x0)Sλi

(r)ϕi(y0)|. (148)
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We apply the Cauchy-Schwarz inequality:

pn(k)

N
≤

(
N−1∑
i=1

S2
λi

(r)ϕ2
i (x0)

) 1
2
(

N−1∑
i=1

S2
λi

(r)ϕ2
i (y0)

) 1
2

. (149)

Using Lemma 10.1 and the known (constant) values for Sλ0 and ϕ0, we
find that each factor on the right is equal to

(
1

k(k − 1)r−1
− 1

N

) 1
2

, (150)

thus

pn(k) ≤ N

k(k − 1)r−1
− 1 (151)

cosh

(
n arccosh

(
k

λ(Γ)

))
≤ N

k(k − 1)r−1
− 1 (152)

n ≤
arccosh

(
N

k(k−1)r−1 − 1
)

arccosh
(

k
λ(Γ)

) . (153)

This holds for n = dist(x0, y0)− 2r − 1, and result (a) follows.
Assume now that Γ is bipartite. Then for each i, λN−1−i = −λi. The

polynomial pn(λ) is even if n is even and odd if n is odd, so

pn(λN−1−i) = (−1)npn(λi) (154)

for each i. The functions Sλ(r), considered as rth-degree polynomials in λ,
have the same parity property (Corollary 9.2), so that

S2
λN−1−i

(r) = S2
λi

(r) (155)

for each i.
Using these observations and part (c) of Lemma 6.1, we conclude that, if

the parity of n is different from the parity of dist(x0, y0),
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pn(λN−1−i)S
2
λN−1−i

(r)ϕN−1−i(x0)ϕN−1−i(y0)

= −pn(λi)S
2
λi

(r)ϕi(x0)ϕi(y0)
(156)

so that the right side of (143) is trivially zero, and the equation yields no
information.

If, however, the parity of n agrees with the parity of dist(x0, y0), then we
have

pn(λN−1)S
2
λN−1

(r)ϕN−1(x0)ϕN−1(y0)

= pn(λ0)S
2
λ0

(r)ϕ0(x0)ϕ0(y0)

=
pn(k)

N

(157)

and equation (143) implies that

2
pn(k)

N
=

∣∣∣∣∣
N−2∑
i=1

pn(λi)S
2
λi

(r)ϕi(x0)ϕi(y0)

∣∣∣∣∣ . (158)

Becuase |λi| ≤ λ(Γ) for i = 1, 2, . . . , N − 2, we have

|pn(λi)| ≤ 1 for i = 1, 2, . . . , N − 2. (159)

Applying this and the triangle inequality to (158), we get

2
pn(k)

N
≤

N−2∑
i=1

|Sλi
(r)ϕi(x0)Sλi

(r)ϕi(y0)|. (160)

As before, we apply the Cauchy-Schwarz inequality:

2
pn(k)

N
≤

(
N−2∑
i=1

S2
λi

(r)ϕ2
i (x0)

) 1
2
(

N−2∑
i=1

S2
λi

(r)ϕ2
i (y0)

) 1
2

. (161)
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We use Lemma 10.1 to evaluate each summation on the right. The i = 0
and i = N − 1 terms are missing, so each factor is equal to

(
1

k(k − 1)r−1
− 2

N

) 1
2

, (162)

and we have

2pn(k) ≤ N

k(k − 1)r−1
− 2 (163)

cosh

(
n arccosh

(
k

λ(Γ)

))
≤ N

2k(k − 1)r−1
− 1 (164)

n ≤
arccosh

(
N

2k(k−1)r−1 − 1
)

arccosh
(

k
λ(Γ)

) . (165)

This is true for each n less than dist(x0, y0) − 2r, provided the parity of
n is the same as that of dist(x0, y0). We set n = dist(x0, y0) − 2r − 2, and
the proof is complete. ¤

12 Using the injectivity radius is worth it

We verify that Theorem 3 actually improves upon Theorem 2, at least in a
very large number of cases. Specifically, we will show, in these cases, that

arccosh
(

N
k(k−1)r−1 − 1

)

arccosh
(

k
λ(Γ)

) + 2r <
arccosh (N − 1)

arccosh
(

k
λ(Γ)

) . (166)

Clearly, this inequality will be “more unequal,” and therefore easier to
establish, when λ(Γ) is close to k, so that the denominators of the fractions
are small. We will show that (166) holds provided λ(Γ) ≥ 2

√
k − 1.

To show that this situation is quite general, we appeal to a result in the
spectral geometry of manifolds. Cheng’s theorem ([3]) gives an upper bound
on the first eigenvalue of the Laplacian on a compact, hyperbolic surface S.
It says that if S is large, then the first eigenvalue of the Laplacian can’t be
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much greater than 1/4. There is an analogous theorem for k-regular graphs
(see [7], Proposition 3.2.7 and [2] Theorem 4.4) giving a lower bound on λ(Γ).
This theorem states that

λ(Γ) ≥ 2
√

k − 1− ε(Γ) (167)

where ε is some positive function which goes to zero as Γ gets large.
Our proof of inequality (166) will begin with the hypothesis λ(Γ) ≥

2
√

k − 1, but there will be a little slack in the computation — that is, the
result will really be proved for λ(Γ) slightly less than 2

√
k − 1 as well as

λ(Γ) ≥ 2
√

k − 1. For simplicity, we will not try to determine exactly how
much less, but, because of Cheng’s theorem, any amount of slack allows us
to infer the result for all sufficiently large graphs, in addition to all smaller
graphs with λ(Γ) ≥ 2

√
k − 1.

We will make use of the following lemma.

Lemma 12.1 Let 1 ≤ r < s. Then

arccosh(s)− arccosh(r) > log(s)− log(r). (168)

Proof.

arccosh(s)− arccosh(r) =

∫ s

r

dt√
t2 − 1

>

∫ s

r

dt

t
= log(s)− log(r). (169)

¤
We now state (166) as

Lemma 12.2 For r ≥ 1, k ≥ 3, N > k(k − 1)r−1, and λ ≥ 2
√

k − 1,

arccosh
(

N
k(k−1)r−1 − 1

)

arccosh
(

k
λ

) + 2r <
arccosh (N − 1)

arccosh
(

k
λ

) . (170)

Proof. From λ ≥ 2
√

k − 1, we get

k

λ
≤ k

2
√

k − 1
. (171)
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We observe that cosh(log
√

k − 1) =
k

2
√

k − 1
and take the arccosh of

both sides of (171):

arccosh

(
k

λ

)
≤ log

√
k − 1. (172)

It follows that

2r arccosh

(
k

λ

)
≤ r log(k − 1). (173)

From the hypotheses,
k

k − 1
and

N − 1

N − k(k − 1)r−1
are both greater than

1, so we can add their logarithms to the right side (this is where the slack
first comes in):

2r arccosh

(
k

λ

)

< r log(k − 1) + log

(
k

k − 1

)
+ log

(
N − 1

N − k(k − 1)r−1

)

= log(N − 1)− log

(
N

k(k − 1)r−1
− 1

)
.

(174)

Now we apply Lemma 12.1 (another source of slack), to get

2r arccosh

(
k

λ

)

< arccosh(N − 1)− arccosh

(
N

k(k − 1)r−1
− 1

)
.

(175)

Dividing through by arccosh( k
λ
) and rearranging the terms in the obvious

way gives the result. ¤
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